選考題(本小題滿分10分)(請考生在22,23,24三題中任選一題做答,如果多做,則按所做的第一題記分.做答時用2B鉛筆在答題卡把所選題目的題號涂黑)

22、(本小題滿分10分)選修4-1幾何證明選講

如圖,D,E分別是AB,AC邊上的點,且不與頂點重合,已知為方程的兩根,

(1)   證明 C,B,D,E四點共圓;

(2)   若,求C,B,D,E四點所在圓的半徑。

 

 

 

【答案】

I)連接DE,根據(jù)題意在△ADE和△ACB中,

                

.又∠DAE=∠CAB,從而△ADE∽△ACB  因此∠ADE=∠ACB                                  

 所以C,B,D,E四點共圓。

(Ⅱ)m=4, n=6時,方程x2-14x+mn=0的兩根為x1=2,x2=12.故  AD=2,AB=12.

取CE的中點G,DB的中點F,分別過G,F作AC,AB的垂線,兩垂線相交于H點,連接DH.因為C,B,D,E四點共圓,所以C,B,D,E四點所在圓的圓心為H,半徑為DH.

由于∠A=900,故GH∥AB, HF∥AC. HF=AG=5,DF= (12-2)=5.

故C,B,D,E四點所在圓的半徑為5

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1;
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程
在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,
π
2
),判斷點P與直線l的位置關系;
(Ⅱ)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選考題部分
(1)(選修4-4 參數(shù)方程與極坐標)(本小題滿分7分)
在極坐標系中,過曲線L:ρsin2θ=2acosθ(a>0)外的一點A(2
5
,π+θ)
(其中tanθ=2,θ為銳角)作平行于θ=
π
4
(ρ∈R)
的直線l與曲線分別交于B,C.
(Ⅰ) 寫出曲線L和直線l的普通方程(以極點為原點,極軸為x軸的正半軸建系);
(Ⅱ)若|AB|,|BC|,|AC|成等比數(shù)列,求a的值.
(2)(選修4-5 不等式證明選講)(本小題滿分7分)
已知正實數(shù)a、b、c滿足條件a+b+c=3,
(Ⅰ) 求證:
a
+
b
+
c
≤3
;
(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年寧夏銀川高三第二次模擬數(shù)學理卷 題型:解答題

四、選考題(本小題滿分10分)

請考生在第(22)、(23)、(24)三題中任選一題做答,如果多做,則按所做的第一題記分.答時用2B鉛筆在答題卡上把所選題目的題號涂黑.

22.選修4-1:幾何證明選講

中,AB=AC,過點A的直線與其外接圓交于點P,交BC延長線于點D。

   (1)求證: ;

   (2)若AC=3,求的值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆永春一中、培元中學、季延中學和石光華僑聯(lián)中高三第一次統(tǒng)考數(shù) 題型:解答題

本題有(1)、(2)、(3)三個選考題,每題7份,請考生任選2題作答,滿分14分.

如果多做,則按所做的前兩題計分.

選修4系列(本小題滿分14分)

   (1)(本小題滿分7分)選修4-2:矩陣與變換

是把坐標平面上的點的橫坐標伸長到倍,縱坐標伸長到倍的伸壓變換.

(Ⅰ)求矩陣的特征值及相應的特征向量;

(Ⅱ)求逆矩陣以及橢圓的作用下的新曲線的方程.

(2) (本小題滿分7分)選修4-4:坐標系與參數(shù)方程

直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知直線l的極坐標方程,曲線C的參數(shù)方程為為參數(shù)),求曲線C截直線l所得的弦長

(3)(本小題滿分7分)選修4—5:不等式選講

已知,且、是正數(shù),求證:.

 

查看答案和解析>>

同步練習冊答案