有四種顏色供選擇給四棱錐的八條棱涂色,要求有公共頂點的棱顏色不同,則共有
 
種不同的涂色方法.
考點:計數(shù)原理的應(yīng)用
專題:排列組合
分析:根據(jù)分類計數(shù)原理,把四棱錐沒有公共點的8條棱分4組,然后進行全排列即可.
解答: 解:設(shè)四棱錐的頂點是P,底面四邊形的個頂點為A、B、C、D.
分析得到四棱錐沒有公共點的8條棱分4組,只有2種情況,
(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC),
每一組情況有4種顏色供選擇,進行全排列,則共有2
A
4
4
=48種不同的涂色方法.
故答案為:48.
點評:本題考查了排列組合種的分組問題,按要求進行恰當?shù)姆纸M是本題的關(guān)鍵,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3,
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和最小值;
(Ⅱ)若對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某程序框圖(即算法流程圖)如圖所示,若使輸出的結(jié)果不大于20,則輸入的整數(shù)i的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a=c+1,a>b>c,則M=
1
a-b
+
2
b-c
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

3個獵人同時向一只兔子射擊,他們射中的概率分別為0.6,0.5,0.4,問這只兔子被射中的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點A(1,0)且與已知直線x-y+1=0平行的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-
1
2
x-
3
4
(a>0),若在任意長度為2的閉區(qū)間上總存在兩點x1、x2,使得|f(x1)-f(x2)|≥
1
4
成立,則a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=lnx-
1
2
ax2-bx

(Ⅰ)當a=b=
1
2
時,求函數(shù)f(x)的最大值;
(Ⅱ)令F(x)=f(x)+
1
2
ax2+bx+
a
x
(0<x≤3)其圖象上任意一點P(x0,y0)處切線的斜率k≤
1
2
恒成立,求實數(shù)a的取值范圍;
(Ⅲ)當a=0,b=-1,方程2mf(x)=x2有唯一實數(shù)解,求正數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示是根據(jù)輸入的x計算y值的程序框圖,若x依次取數(shù)列{
n2+4
n
}(n∈N*)中的項,則所得y值得最小值為( 。
A、4B、8C、16D、32

查看答案和解析>>

同步練習冊答案