一個(gè)口袋中裝有大小相同的2個(gè)白球和4個(gè)黑球.

(Ⅰ)采取放回抽樣方式,從中摸出兩個(gè)球,求兩球恰好顏色不同的概率;

(Ⅱ)采取不放回抽樣方式,從中摸出兩個(gè)球,求摸得白球的個(gè)數(shù)的期望和方差.

答案:
解析:

  解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,

  ∵“兩球恰好顏色不同”共2×4+4×2=16種可能, 6分

  解法二:“有放回摸取”可看作獨(dú)立重復(fù)實(shí)驗(yàn)

  ∵每次摸出一球得白球的概率為

  ∴“有放回摸兩次,顏色不同”的概率為  6分

  (2)設(shè)摸得白球的個(gè)數(shù)為,依題意得

  


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)口袋中裝有大小相同的2個(gè)白球和3個(gè)黑球,從中摸出一個(gè)球,放回后再摸出一個(gè)球,則兩次摸出的球恰好顏色不同的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)口袋中裝有大小相同的n個(gè)紅球(n≥5且n∈N)和5個(gè)白球,一次摸獎(jiǎng)從中摸兩個(gè)球,兩個(gè)球的顏色不同則為中獎(jiǎng).
(I)試用n表示一次摸獎(jiǎng)中獎(jiǎng)的概率p;
(II)記從口袋中三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率為m,用p表示恰有一次中獎(jiǎng)的概率m,求m的最大值及m取最大值時(shí)p、n的值;
(III)當(dāng)n=15時(shí),將15個(gè)紅球全部取出,全部作如下標(biāo)記:記上i號(hào)的有i個(gè)(i=1,2,3,4),共余的紅球記上0號(hào).并將標(biāo)號(hào)的15個(gè)紅球放人另一袋中,現(xiàn)從15個(gè)紅球的袋中任取一球,ξ表示所取球的標(biāo)號(hào),求ξ的分布列、期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•惠州模擬)一個(gè)口袋中裝有大小相同的2個(gè)白球和4個(gè)黑球.
(1)采取放回抽樣方式,從中摸出兩個(gè)球,求兩球恰好顏色不同的概率;
(2)采取不放回抽樣方式,從中摸出兩個(gè)球,求摸得白球的個(gè)數(shù)的期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)口袋中裝有大小相同的8個(gè)白球和7個(gè)黑球,從中任意摸出2個(gè)球,則摸出的2個(gè)球至少有一個(gè)是白球的概率是
86
105
86
105
(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•孝感模擬)一個(gè)口袋中裝有大小相同的n個(gè)紅球(n≥5且n∈N)和5個(gè)白球,一次摸獎(jiǎng)從中摸兩個(gè)球,兩個(gè)球的顏色不同則為中獎(jiǎng).
(1)記三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率為P.試問當(dāng)n等于多少時(shí),P的值最大?
(2)在(1)的條件下,將5個(gè)白球全部取出后,對(duì)剩下的n個(gè)紅球全部作如下標(biāo)記:記上i號(hào)的有i個(gè)(i=1,2,3,4),其余的紅球記上0號(hào),現(xiàn)從袋中任取一球.ξ表示所取球的標(biāo)號(hào),求ξ的分布列,期望和方差.

查看答案和解析>>

同步練習(xí)冊(cè)答案