17.已知$\overrightarrow a=(2,4),\overrightarrow b=(x,-2),且\overrightarrow a∥\overrightarrow b$,則x=-1.

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow{a}∥\overrightarrow$,∴4x+4=0,解得x=-1.
故答案為:-1.

點評 本題考查了向量共線定理,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.為了培養(yǎng)學(xué)生的安全意識,某中學(xué)舉行了一次安全自救的知識競賽活動,共有800名學(xué)生參加了這次競賽,為了解本次競賽的成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,得到如下的頻率分布表:
序號
(i)
分組
(分?jǐn)?shù))
組中值
(Gi)
頻數(shù)
(人數(shù))
頻率
(Fi)
1[60,70)650.10
2[70,80)7520
3[80,90)850.20
4[90,100)95
合計501
請你根據(jù)頻率分布表解答下列問題:
(1)求出頻率分布表中①、②、③、④、⑤處的值;
(2)在上述統(tǒng)計數(shù)據(jù)的分析中,有一項指標(biāo)計算的程序框圖如圖所示,則該程序功能是什么?求輸出S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若f(x)在R上可導(dǎo),$f(x)={x^2}+2f'(\frac{π}{2})x+sin2x$,則$\int_0^1{f(x)dx}$=( 。
A.$\frac{7}{3}-π-cos2$B.$\frac{11}{6}-π+\frac{1}{2}cos2$C.$\frac{17}{6}-π-\frac{1}{2}cos2$D.$\frac{11}{6}-π-\frac{1}{2}cos2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{2}$x2-ax+(3-a)lnx,a∈R.
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線2x-y+1=0垂直,求a的值;
(2)設(shè)f(x)有兩個極值點x1,x2,且x1<x2,求證:f(x1)+f(x2)>-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.△ABC中,角A、B、C所對的邊分別是a、b、c,若a=2,b=3,$c=\sqrt{5}$,則cosC=( 。
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.△ABC內(nèi)角A、B、C的對邊分別為a、b、c,且a+c=5,且a>c,b=3,$cosB=\frac{1}{3}$.
(1)求a、c的值;
(2)求cos(A+B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)數(shù)列{an}的前n項和為Sn,a1=3,并且Sn=2nan+1-3n2-4n,n∈N*,.
(1)求a2,a3,a4的值;
(2)歸納出數(shù)列{an}的通項公式并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$\overrightarrow a=(1,3),\overrightarrow b=(2,x)$,設(shè)$\overrightarrow a$與$\overrightarrow b$的夾角為θ,若θ為銳角,則x的取值范圍為{x|x>-$\frac{2}{3}$,且 x≠6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)等比數(shù)列{an}滿足a1+a3=20,a2+a4=10,則a1a2a3..an的最大值為210

查看答案和解析>>

同步練習(xí)冊答案