【題目】設(shè)命題函數(shù)的值域?yàn)?/span>;命題,不等式恒成立,如果命題“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍。
【答案】
【解析】
試題根據(jù)若命題“P或Q”為真命題,且“P且Q”為假命題知道P和Q一真一假,分兩種情況進(jìn)行討論:P真Q假和P假Q真,再根據(jù)二次函數(shù)的恒成立問題的解法和不等式的恒成立問題的解法解題,要把每種情況都討論清楚,不要遺漏知識(shí)點(diǎn).
試題解析:若命題“P或Q”為真命題,且“P且Q”為假命題,則有P和Q一真一假, .2分
先求出P,Q都為真時(shí)a的取值:
當(dāng)P為真時(shí),即對(duì)任意的,都有恒成立,
則,解得, 4分
當(dāng)Q為真時(shí),在區(qū)間上的最大值是3,
則有恒成立,解得, 6分
由上知當(dāng)P,Q一真一假時(shí)有:
P真Q假P假Q真, 10分
解得. ...12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,短軸長(zhǎng)和焦距都等于2, 是橢圓上的一點(diǎn),且在第一象限內(nèi),過且斜率等于的直線與橢圓交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為.
(Ⅰ)證明:直線的斜率為定值;
(Ⅱ)求面積的最大值,并求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)設(shè)函數(shù)在處的切線方程為,若函數(shù)是上的單調(diào)增函數(shù),求的值;
(3)是否存在一條直線與函數(shù)的圖象相切于兩個(gè)不同的點(diǎn)?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】研究變量,得到一組樣本數(shù)據(jù),進(jìn)行回歸分析,有以下結(jié)論
①殘差平方和越小的模型,擬合的效果越好;
②用相關(guān)指數(shù)來刻畫回歸效果,越小說明擬合效果越好;
③線性回歸方程對(duì)應(yīng)的直線至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn);
④若變量和之間的相關(guān)系數(shù)為,則變量和之間的負(fù)相關(guān)很強(qiáng).
以上正確說法的個(gè)數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年5月27日當(dāng)今世界圍棋排名第一的柯潔在與的人機(jī)大戰(zhàn)中中盤棄子認(rèn)輸,至此柯潔與的三場(chǎng)比賽全部結(jié)束,柯潔三戰(zhàn)全負(fù),這次人機(jī)大戰(zhàn)再次引發(fā)全民對(duì)圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.
(1)請(qǐng)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有95%的把握認(rèn)為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
(2)為了進(jìn)一步了解“圍棋迷”的圍棋水平,從“圍棋迷”中按性別分層抽樣抽取5名學(xué)生組隊(duì)參加校際交流賽,首輪該校需派兩名學(xué)生出賽,若從5名學(xué)生中隨機(jī)抽取2人出賽,求2人恰好一男一女的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,用總長(zhǎng)為定值l的籬笆圍成長(zhǎng)方形的場(chǎng)地,以墻為一邊,并用平行于一邊的籬笆隔開.
(1)設(shè)場(chǎng)地面積為y,垂直于墻的邊長(zhǎng)為x,試用解析式將y表示成x的函數(shù),并確定這個(gè)函數(shù)的定義域;
(2)怎樣圍才能使得場(chǎng)地的面積最大?最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線經(jīng)過曲線的左焦點(diǎn).
(1)求的值及直線的普通方程;
(2)設(shè)曲線的內(nèi)接矩形的周長(zhǎng)為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地舉辦水果觀光采摘節(jié),并推出配套旅游項(xiàng)目,統(tǒng)計(jì)了4月份100名游客購買水果的情況,得到如圖所示的頻率分布直方圖.
(1)若將消費(fèi)金額不低于80元的游客稱為“水果達(dá)人”,現(xiàn)用分層抽樣的方法從樣本的“水果達(dá)人”中抽取5人,求這5人中消費(fèi)金額不低于100元的人數(shù);
(2)從(1)中的5人中抽取2人作為幸運(yùn)客戶免費(fèi)參加配套旅游項(xiàng)目,請(qǐng)列出所有的可能結(jié)果,并求這2人中至少有1人購買金額不低于100元的概率;
(3)為吸引顧客,該地特推出兩種促銷方案,
方案一:每滿80元可立減8元;
方案二:金額超過50元但又不超過80元的部分打9折,金額超過80元但又不超過100元的部分打8折,金額超過100元的部分打7折.
若水果的價(jià)格為11元/千克,某游客要購買10千克,應(yīng)該選擇哪種方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面 是邊長(zhǎng)為1的正方形,平面,,與平面所成角為60°.
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com