12.極坐標(biāo)方程ρ2cos2θ+1=0表示的曲線(xiàn)是(  )
A.B.橢圓C.雙曲線(xiàn)D.拋物線(xiàn)

分析 利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,將其化為普通方程可得結(jié)論.

解答 解:由ρ2cos2θ+1=0,
可得:ρ2(2cos2θ-1)=-1,
得:2ρ2cos2θ=ρ2-1
2x2=x2+y2-1,即y2-x2=1,
∴極坐標(biāo)方程ρ2cos2θ+1=0表示的曲線(xiàn)是等軸雙曲線(xiàn).
故選C

點(diǎn)評(píng) 本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求曲線(xiàn)y=$\sqrt{x}$,x+y=6,y=-$\frac{1}{4}$x圍成的平面圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖,網(wǎng)絡(luò)紙的小正方形的邊長(zhǎng)是1,粗線(xiàn)畫(huà)出的是一個(gè)幾何體的三視圖,其中正視圖為等邊三角形,則該幾何體的體積為$\frac{(4+π)\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.圓x2+y2-2x+4y+1=0的面積為4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)向量$\overrightarrow a,\vec b$滿(mǎn)足$|\overrightarrow a|=|\vec b|=1,|2\overrightarrow a-\vec b|=2$,則$|\overrightarrow a+\vec b|$=$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)與f'(x)的圖象如圖所示,則函數(shù)$g(x)=\frac{f(x)}{e^x}$的單調(diào)遞增區(qū)間為(  )
A.(0,4)B.$({-∞,1}),({\frac{4}{3},4})$C.(0,1),(4,+∞)D.(-∞,0),(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若復(fù)數(shù)z=log2(x2-3x-2)+ilog2(x-3)為實(shí)數(shù),則實(shí)數(shù)x的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在正方形網(wǎng)格中,某四面體的三視圖如圖所示.如果小正方形網(wǎng)格的邊長(zhǎng)為1,那么該四面體最長(zhǎng)棱的棱長(zhǎng)為( 。
A.4$\sqrt{3}$B.6C.4$\sqrt{2}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=$\frac{{{4^x}+a}}{{{2^{x+1}}}}$,h(x)=2f(x)-ax-b.
(Ⅰ)判斷f(x)的奇偶性,并說(shuō)明理由;
(Ⅱ)若f(x)為奇函數(shù),且h(x)在[-1,1]有零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案