已知函數(shù)f(x)在定義域(0,+∞)上單調(diào)遞減,且滿足f(x•y)=f(x)+f(y),f(2)=1,
(1)求f(1)的值;
(2)解不等式f(-x)+f(3-x)≥2.
分析:(1)由f(x•y)=f(x)+f(y),f(2)=1,知f(2)=f(2)+f(1),由此能求出f(1).
(2)由題設(shè)知f(-x)+f(3-x)=f(x2-3x)≥2=f(4).由此能求出不等式f(-x)+f(3-x)≥2的解集.
解答:解:(1)∵f(x•y)=f(x)+f(y),f(2)=1,
∴f(2)=f(2×1)=f(2)+f(1),
∴f(1)=0.
(2)∵f(x)在定義域(0,+∞)上單調(diào)遞減,
且滿足f(x•y)=f(x)+f(y),f(2)=1,
∴f(-x)+f(3-x)=f(x2-3x)≥2=f(4).
-x>0
3-x>0
x2-3x≤4
,解得-1≤x<0.
∴不等式f(-x)+f(3-x)≥2的解集為[-1,0).
點(diǎn)評(píng):本題考查抽象函數(shù)的函數(shù)值的求法,考查抽象函數(shù)對(duì)應(yīng)的不等式的解法.解題時(shí)要認(rèn)真審題,注意抽象函數(shù)的單調(diào)性的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x3+x2,數(shù)列|xn|(xn>0)的第一項(xiàng)xn=1,以后各項(xiàng)按如下方式取定:曲線x=f(x)在(xn+1,f(xn+1))處的切線與經(jīng)過(guò)(0,0)和(xn,f (xn))兩點(diǎn)的直線平行(如圖).
求證:當(dāng)n∈N*時(shí),
(Ⅰ)xn2+xn=3xn+12+2xn+1;
(Ⅱ)(
1
2
)n-1xn≤(
1
2
)n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則
S1S2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的有(  )個(gè).
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對(duì)任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點(diǎn)P處的切線存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線存在.
③因?yàn)?>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對(duì)求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個(gè)根,則實(shí)數(shù)p,q的值分別是12,26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+
bx-1
-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點(diǎn)處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實(shí)數(shù)m,k,使得f(x)+f(m-x)=k對(duì)于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個(gè)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省臨沂市郯城一中高二(下)4月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

下列說(shuō)法正確的有( )個(gè).
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對(duì)任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點(diǎn)P處的切線存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線存在.
③因?yàn)?>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對(duì)求和中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個(gè)根,則實(shí)數(shù)p,q的值分別是12,26.
A.0
B.1
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案