分析 (1)求出函數(shù)的解析式,根據(jù)二次函數(shù)的性質(zhì)求出函數(shù)的最大值和最小值即可;
(2)根據(jù)二次函數(shù)的性質(zhì)得到函數(shù)f(x)的單調(diào)性,求出tanθ的范圍,求出θ的范圍即可.
解答 解:(1)當(dāng)θ=-$\frac{π}{6}$時(shí),
f(x)=x2-$\frac{2\sqrt{3}}{3}$x-1=(x-$\frac{\sqrt{3}}{3}$)2-$\frac{4}{3}$.
∵x∈[-1,$\sqrt{3}$],
∴當(dāng)x=$\frac{\sqrt{3}}{3}$時(shí),f(x)的最小值為-$\frac{4}{3}$,
當(dāng)x=-1時(shí),f(x)的最大值為$\frac{2\sqrt{3}}{3}$.
(2)f(x)=(x+tanθ)2-1-tan2θ是關(guān)于x的二次函數(shù),
它的圖象的對(duì)稱軸為x=-tanθ,
∵y=f(x)在區(qū)間[-1,$\sqrt{3}$]上是單調(diào)函數(shù),
∴-tanθ≤-1,或-tanθ≥$\sqrt{3}$,即tanθ≥1,或tanθ≤-$\sqrt{3}$.
∵θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴θ的取值范圍是[$\frac{π}{4}$,$\frac{π}{2}$)∪(-$\frac{π}{2}$,-$\frac{π}{3}$].
點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì)以及三角函數(shù)的性質(zhì),是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-e]∪[e,+∞﹚ | B. | [-e,e] | ||
C. | ﹙-∞,-2-$\frac{1}{e}$]∪[-2+$\frac{1}{e}$,+∞﹚ | D. | [-2-$\frac{1}{e}$,-2+$\frac{1}{e}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.36 | B. | 0.64 | C. | 0.74 | D. | 0.63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 奇函數(shù)且在(0,+∞)上是增函數(shù) | B. | 偶函數(shù)且在(0,+∞)上是增函數(shù) | ||
C. | 奇函數(shù)且在(0,+∞)上是減函數(shù) | D. | 偶函數(shù)且在(0,+∞)上是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x2+4)′=2x+4 | B. | ${({{{log}_2}x})^′}=\frac{1}{xln2}$ | C. | (cosx)′=-sinx | D. | ${({\frac{1}{x}})^′}=-\frac{1}{x^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 3 | C. | 4$\sqrt{3}$ | D. | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com