2.函數(shù)f(x)=$\frac{2sinx•cosx}{1+sinx+cosx}$,x∈(0,$\frac{π}{2}$]的最大值M,最小值為N,則M-N=( 。
A.$\frac{\sqrt{2}-1}{2}$B.$\sqrt{2}$-1C.2$\sqrt{2}$D.$\sqrt{2}$+1

分析 令t=sinx+cosx,運用兩角和的正弦公式,化為一個角的正弦形式,結合條件和正弦函數(shù)的圖象和性質,可得t的范圍,再由兩邊平方,可得t的函數(shù)式,化簡后運用一次函數(shù)的單調性,即可得到所求最值之差.

解答 解:令t=sinx+cosx=$\sqrt{2}$($\frac{\sqrt{2}}{2}$sinx+$\frac{\sqrt{2}}{2}$cosx)=$\sqrt{2}$sin(x+$\frac{π}{4}$),
x∈(0,$\frac{π}{2}$],可得x+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{3π}{4}$],
當x+$\frac{π}{4}$=$\frac{π}{2}$即x=$\frac{π}{4}$時,t取得最大值$\sqrt{2}$,
當x+$\frac{π}{4}$=$\frac{3π}{4}$即x=$\frac{π}{2}$時,t取得最小值1,
則t∈[1,$\sqrt{2}$].
又t2=sin2x+cos2x+2sinxcosx=1+2sinxcosx,
可得2sinxcosx=t2-1,
函數(shù)y=g(t)=$\frac{{t}^{2}-1}{1+t}$=t-1,
由g(t)在t∈[1,$\sqrt{2}$]遞增,可得g(t)的最小值為1-1=0,
最大值為$\sqrt{2}$-1.
即有M-N=$\sqrt{2}$-1-0=$\sqrt{2}$-1.
故選:B.

點評 本題考查函數(shù)的最值的求法,注意運用換元法和三角函數(shù)的恒等變換公式,以及正弦函數(shù)的圖象和性質,同時考查一次函數(shù)的單調性的運用,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.若曲線${C_1}:{x^2}+{y^2}-2x=0$與曲線${C_2}:m{x^2}-xy+mx=0$有三個不同的公共點,則實數(shù)m的取值范圍是( 。
A.$(0,\sqrt{3})$B.$(-\sqrt{3},0)∪(0,\sqrt{3})$C.$(0,\frac{{\sqrt{3}}}{3})$D.$(-\frac{{\sqrt{3}}}{3},0)∪(0,\frac{{\sqrt{3}}}{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0
(1)求角B的大。
(2)若b=$\frac{1}{2}$,求△ABC的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知非零向量$\overrightarrow{AB},\overrightarrow{AC}$滿足$(\frac{{\overrightarrow{AB}}}{{|\overrightarrow{AB}|cosB}}+\frac{{\overrightarrow{AC}}}{{|\overrightarrow{AC}|cosC}})•\overrightarrow{BC}=\overrightarrow{AB}•\overrightarrow{AC}$,則△ABC為(  )
A.等腰三角形B.銳角三角形C.鈍角三角形D.直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知數(shù)列{an}(n∈N*),若{an+an+1}為等比數(shù)列,則稱{an}具有性質P.
(1)若數(shù)列{an}具有性質P,且a1=a2=1,a3=3,求a4、a5的值;
(2)若bn=2n+(-1)n,求證:數(shù)列{bn}具有性質P;
(3)設c1+c2+…+cn=n2+n,數(shù)列{dn}具有性質P,其中d1=1,d3-d2=c1,d2+d3=c2,若dn>102,求正整數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知銳角三角形ABC的內角A,B,C的對邊分別為a,b,c,且$a=bcosC+\frac{{\sqrt{3}}}{3}csinB$.,
(1)求B;
(2)若b=2,求ac的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若f(x)在U(x0,δ)有定義,且在x0點可導,則$\underset{lim}{h→0}\frac{f({x}_{0}+2h)-f({x}_{0}-h)}{h}$=3f′(x0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.求下列函數(shù)的反函數(shù),并指出該函數(shù)和它的反函數(shù)的定義域:
(1)y=$\frac{x}{2x-1}$;
(2)y=$\sqrt{2x-3}$;
(3)y=ex-1;
(4)y=2sinx+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.執(zhí)行如圖所示的程序框圖,則輸出的a=-4.

查看答案和解析>>

同步練習冊答案