【題目】在平面直角坐標系中,拋物線,直線交于兩點,.

(1)求的方程;

(2)斜率為)的直線過線段的中點,與交于兩點,直線分別交直線兩點,求的最大值.

【答案】(1);(2).

【解析】分析:第一問首先將直線方程與拋物線方程聯(lián)立,求得方程的根,之后借助于弦長公式以及題中所給的條件,建立所滿足的等量關系式,從而求得拋物線的方程,第二問根據(jù)第一問的結果可以求得線段的中點的坐標,從而應用點斜式方程寫出直線的方程,然后與拋物線方程聯(lián)立,根據(jù)題意,將轉化為關于的關系式,結合題中所給的的范圍,求得結果.

詳解:(1)由方程組

解得

所以,則

,所以

的方程為

(2)由(1),則線段的中點坐標

故直線的方程為

由方程組

,則,

直線的方程,代入,解得,

所以,同理得

所以

因為,所以

時,取得最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,圓的極坐標方程為.

(1)求直線的普通方程與圓的直角坐標方程;

(2)設動點在圓上,動線段的中點的軌跡為,與直線交點為,且直角坐標系中,點的橫坐標大于點的橫坐標,求點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以原點為極點,以軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為:.

(1)若曲線參數(shù)方程為:為參數(shù)),求曲線的直角坐標方程和曲線的普通方程;

(2)若曲線參數(shù)方程為:為參數(shù)),,且曲線與曲線交點分別為,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,焦距為,點為橢圓上一點,,的面積為.

(1)求橢圓的標準方程;

(2)設點為橢圓的上頂點,過橢圓內(nèi)一點的直線交橢圓于兩點,若的面積比為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)時取得極值且有兩個零點.

(1)求的值與實數(shù)的取值范圍;

(2)記函數(shù)兩個相異零點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在等腰梯形中,的中點,,,現(xiàn)在沿折起使點到點P處,得到三棱錐,且平面平面.

(1)棱上是否存在一點,使得平面?請說明你的結論;

(2)求證:平面

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,銳角的頂點為坐標原點,始邊為軸的正半軸,終邊與單位圓的交點分別為.已知點的橫坐標為,點的縱坐標為

(1)求的值;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4AB=2,∠BAD=60°,E,MN分別是BC,BB1A1D的中點.

1)證明:MN∥平面C1DE;

2)求二面角A-MA1-N的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象上存在關于軸對稱的點,則的取值范圍是__________.

查看答案和解析>>

同步練習冊答案