已知直線和點(diǎn)(1,2).設(shè)過(guò)點(diǎn)與垂直的直線為.
(1)求直線的方程;
(2)求直線與兩坐標(biāo)軸圍成的三角形的面積.
(1)   (2).    

試題分析:(1) 由直線,知
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011105822315.png" style="vertical-align:middle;" />,所以        解得                     
所以的方程為  整理得 
(2)由的方程
解得,當(dāng)時(shí),      當(dāng)時(shí),                        
所以,即該直線與兩坐標(biāo)軸圍成的面積為.    
點(diǎn)評(píng):利用直線的位置關(guān)系求解直線的方程是解決此類(lèi)問(wèn)題的常用方法,另外注意直線斜率是否存在、截距的概念等易混淆的地方
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,直線與直線互相垂直的充要條件是m=  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)A(xA,yA),B(xB,yB)為平面直角坐標(biāo)系上的兩點(diǎn),其中xA,yA,xB,yBÎZ.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|·|△y|≠0,則稱(chēng)點(diǎn)B為點(diǎn)A的“相關(guān)點(diǎn)”,記作:B=f(A).
(1)請(qǐng)問(wèn):點(diǎn)(0,0)的“相關(guān)點(diǎn)”有幾個(gè)?判斷這些點(diǎn)是否在同一個(gè)圓上,若在,寫(xiě)出圓的方程;若不在,說(shuō)明理由;
(2)已知點(diǎn)H(9,3),L(5,3),若點(diǎn)M滿(mǎn)足M=f(H),L=f(M),求點(diǎn)M的坐標(biāo);
(3)已知P0(x0,y0)(x0ÎZ,y0ÎZ)為一個(gè)定點(diǎn), 若點(diǎn)Pi滿(mǎn)足Pi=f (Pi-1),其中i=1,2,3,···,n,求|P0Pn|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

點(diǎn)(-2,1)到直線的距離等于_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知的頂點(diǎn)、,邊上的中線所在直線為.(1)求的方程;(2)求點(diǎn)A關(guān)于直線的對(duì)稱(chēng)點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線 在點(diǎn) 處的切線  平行直線,且點(diǎn)在第三象限.
(1)求的坐標(biāo);
(2)若直線  , 且  也過(guò)切點(diǎn) ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)點(diǎn),且在兩坐標(biāo)軸上截距相等的直線方程是_________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)如圖,在四邊形中,點(diǎn)C(1,3).

(1)求OC所在直線的斜率;
(2)過(guò)點(diǎn)C做CD⊥AB于點(diǎn)D,求CD所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
已知的三個(gè)頂點(diǎn).
(Ⅰ)求邊所在直線方程;
(Ⅱ)邊上中線的方程為,且,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案