分析 求出x2∈[0,2]時(shí)f(x2)的值域,x1∈[0,2]時(shí)g(x1)的值域;
根據(jù)題意得出關(guān)于a的不等式組,求出a的取值范圍.
解答 解:函數(shù)$f(x)=\frac{-4x+5}{x+1}$=-4+$\frac{9}{x+1}$,
$g(x)=asin(\frac{π}{3}x)+2a$(a>0),
x2∈[0,2],x2+1∈[1,3],
∴$\frac{9}{{x}_{2}+1}$∈[3,9],
∴-4+$\frac{9}{{x}_{2}+1}$∈[-1,5],
即f(x2)∈[-1,5];
又x1∈[0,2],$\frac{π}{3}$x1∈[0,$\frac{2π}{3}$],
sin($\frac{π}{3}$x1)∈[0,1],
∴g(x)=asin($\frac{π}{3}$x1)+2a∈[a,3a];
對任意x1∈[0,2],總存在x2∈[0,2],使g(x1)=f(x2)成立,
等價(jià)于$\left\{\begin{array}{l}{a≥-1}\\{3a≤5}\end{array}\right.$,
解得-1≤a≤$\frac{5}{3}$;
又a>0,
∴實(shí)數(shù)a的取值范圍是0<a≤$\frac{5}{3}$.
故答案為:(0,$\frac{5}{3}$].
點(diǎn)評 本題主要考查了求函數(shù)的值域以及正弦函數(shù)的圖象與性質(zhì)的應(yīng)用問題,體現(xiàn)了轉(zhuǎn)化思想,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{3π}{4}$ | C. | π | D. | $\frac{3π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | c>b>a | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | $(0,\frac{1}{2e})$ | C. | $(-∞,0)∪[\frac{1}{2e},+∞)$ | D. | $[\frac{1}{2e},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$i | D. | -$\frac{1}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,0) | B. | (-2,0] | C. | [-2,0) | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com