分析 利用余弦定理列出關(guān)系式,聯(lián)立求出a與b的值,再利用正弦定理即可確定出sinA的值;
解答 解:∵點(diǎn)D為AC的中點(diǎn),∴$\overrightarrow{BD}=\frac{1}{2}(\overrightarrow{BA}+\overrightarrow{BC})$,
兩邊平方得:$\frac{1}{4}$(c2+a2+2ac•cosB)=$\frac{17}{4}$,
把c=2代入得:3a2+4a-39=0,
分解得:(3a+13)(a-3)=0,
解得:a=$\frac{13}{3}$-(舍去)或a=3,
∵AB=c=2,cosB=$\frac{1}{3}$.∴sinB=$\sqrt{1-co{s}^{2}B}=\frac{2\sqrt{2}}{3}$
由余弦定理得:b2=a2+4-$\frac{4}{3}$a,
把a(bǔ)=3代入得:b=3,
由正弦定理$\frac{a}{sinA}=\frac{sinB}$,得sinA=$\frac{asinB}=\frac{2\sqrt{2}}{3}$,
故答案為:$\frac{2\sqrt{2}}{3}$.
點(diǎn)評 此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理、向量的線性運(yùn)算是解本題的關(guān)鍵
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 8 | C. | 0 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 抽簽法 | B. | 隨機(jī)數(shù)表法 | C. | 系統(tǒng)抽樣法 | D. | 放回抽樣法 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $x+y≤2(\sqrt{2}+1)$ | B. | $xy≤\sqrt{2}+1$ | C. | $x+y≤{(\sqrt{2}+1)^2}$ | D. | $xy≥{(\sqrt{2}+1)^2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com