13.某廠以x千克/小時(shí)的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每一小時(shí)可獲得的利潤(rùn)是$50(5x-\frac{3}{x}+1)$元.
(1)要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤(rùn)不低于1500元,求x的取值范圍;
(2)要使生產(chǎn)480千克該產(chǎn)品獲得的利潤(rùn)最大,問:該廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤(rùn).

分析 (1)利用已知條件列出不等式求解即可.
(2)利用二次函數(shù)的性質(zhì),通過配方求解函數(shù)的最值即可.

解答 解:(1)根據(jù)題意,
有$100(5x-\frac{3}{x}+1)≥1500$,
得5x2-14x-3≥0,得x≥3或$x≤-\frac{1}{5}$,
又1≤x≤10,得3≤x≤10.
(2)生產(chǎn)480千克該產(chǎn)品獲得的利潤(rùn)為$u=24000(5+\frac{1}{x}-\frac{3}{x^2})$,1≤x≤10,
記$f(x)=-\frac{3}{x^2}+\frac{1}{x}+5$,1≤x≤10,
則$f(x)=-3{(\frac{1}{x}-\frac{1}{6})^2}+\frac{1}{12}+5$
當(dāng)且僅當(dāng)x=6時(shí)取得最大值$\frac{61}{12}$,
則獲得的最大利潤(rùn)為$u=24000×\frac{61}{12}=122000$(元)
故該廠以6千克/小時(shí)的速度生產(chǎn),可獲得最大利潤(rùn)為122000元.

點(diǎn)評(píng) 本題考查函數(shù)的實(shí)際應(yīng)用,二次函數(shù)的性質(zhì),考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)z滿足z=$\frac{2+ai}{1+i}$(i為虛數(shù)單位,a∈R),若復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于直角坐標(biāo)平面內(nèi)的直線y=-x上,則a的值為(  )
A.0B.lC.-lD.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖給出的是計(jì)算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2017}$的值的一個(gè)程序框圖,則判斷框內(nèi)應(yīng)填入的條件是( 。
A.i≤1009B.i>1009C.i≤1010D.i>1010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:填空題

若數(shù)列滿足,則稱數(shù)列為“差遞減”數(shù)列.若數(shù)列是“差遞減”數(shù)列,且其通項(xiàng)與其前項(xiàng)和)滿足),則實(shí)數(shù)的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)$g(x)=({x^2}-cosx)sin\frac{π}{6}$,對(duì)于$[{-\frac{π}{2},\frac{π}{2}}]$上的任意x1,x2,有如下條件:
①${x_1}^3>{x_2}^3$;②|x1|>x2;③x1>|x2|;④$x_1^2>x_2^2$.
其中能使g(x1)>g(x2)恒成立的條件序號(hào)是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.命題“?x0∈(0,+∞),lnx0=2x0+1”的否定是( 。
A.?x0∈(0,+∞),lnx0≠2x0+1B.?x0∉(0,+∞),lnx0=2x0+1
C.?x∈(0,+∞),lnx≠2x+1D.?x∉(0,+∞),lnx≠2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}滿足a1=3,$\sqrt{{a_{n+1}}+1}-\sqrt{{a_n}+1}=1,n∈{N^*}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2$\frac{{{n^2}+n}}{a_n}$,數(shù)列{bn}的前n項(xiàng)和為Sn,求使Sn<-4的最小自然數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\sqrt{3}$sinωx cosωx-sin2ωx+1(ω>0)相鄰兩條對(duì)稱軸之間的距離為$\frac{π}{2}$.
(Ⅰ)求ω的值及函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)已知a,b,c分別為△ABC中角A,B,C的對(duì)邊,且滿足a=$\sqrt{3}$,f(A)=1,求△ABC 面積 S 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)π的值:先請(qǐng)200名同學(xué),每人隨機(jī)寫下一個(gè)都小于1 的正實(shí)數(shù)對(duì)(x,y);再統(tǒng)計(jì)兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)(x,y)的個(gè)數(shù)m;最后再根據(jù)統(tǒng)計(jì)數(shù)m來估計(jì)π的值.假如統(tǒng)計(jì)結(jié)果是m=56,那么可以估計(jì)π≈$\frac{78}{25}$.(用分?jǐn)?shù)表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案