分析 (1)由數(shù)列{$\sqrt{{a}_{n}+1}$}是以2為首項(xiàng),1為公差的等差數(shù)列,$\sqrt{{a}_{n}+1}$=2+n-1=n+1,即可求得數(shù)列{an}的通項(xiàng)公式;
(2)由(1)可知bn=log2$\frac{{{n^2}+n}}{a_n}$=log2$\frac{n+1}{n+2}$=log2(n+1)-log2(n+2),求得Sn=b1+b2+…+bn=1-log2(n+2),由Sn<-4,利用對(duì)數(shù)的運(yùn)算性質(zhì),即可求得最小自然數(shù)n的值.
解答 解:(1)由$\sqrt{{a_{n+1}}+1}-\sqrt{{a_n}+1}=1,n∈{N^*}$,
則數(shù)列{$\sqrt{{a}_{n}+1}$}是以2為首項(xiàng),1為公差的等差數(shù)列,
∴$\sqrt{{a}_{n}+1}$=2+n-1=n+1,
∴an=n2+2n,
數(shù)列{an}的通項(xiàng)公式an=n2+2n;
(2)bn=log2$\frac{{{n^2}+n}}{a_n}$=log2$\frac{{n}^{2}+n}{{n}^{2}+2n}$=log2$\frac{n+1}{n+2}$=log2(n+1)-log2(n+2),
數(shù)列{bn}的前n項(xiàng)和為Sn,Sn=b1+b2+…+bn=log22-log23+log23-log24+…+log2(n+1)-log2(n+2),
=1-log2(n+2),
由Sn<-4,1-log2(n+2)<-4,
log2(n+2)>5=log232,
∴n+2>32,解得:n>30,
滿足Sn<-4的最小自然數(shù)n為31.
點(diǎn)評(píng) 本題考查等差數(shù)列的性質(zhì),等差數(shù)列通項(xiàng)公式,對(duì)數(shù)的運(yùn)算性質(zhì),考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=|sinx| | B. | f(x)=ln$\frac{2-x}{2+x}$ | C. | f(x)=$\frac{1}{2}$(ex-e-x) | D. | f(x)=ln($\sqrt{{x}^{2}+1}$-x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 2 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com