有甲、乙兩個(gè)工廠,甲廠位于一直線河岸的岸邊A處,乙廠與甲廠在河的同側(cè),乙廠位于離河岸40 km的B處,乙廠到河岸的垂足D與A相距50 km,兩廠要在此岸邊合建一個(gè)供水站C,從供水站到甲廠和乙廠的水管費(fèi)用分別為每千米3a元和5a元,問(wèn)供水站C建在岸邊何處才能使水管費(fèi)用最?

答案:
解析:

  探究:根據(jù)題設(shè)條件作出圖形,分析各已知條件之間的關(guān)系,借助圖形的特征,合理選擇這些條件間的聯(lián)系方式,適當(dāng)選定變?cè),?gòu)造相應(yīng)的函數(shù)關(guān)系,通過(guò)求導(dǎo)的方法或其他方法求出函數(shù)的最小值,可確定點(diǎn)C的位置.

  解法一:根據(jù)題意知,只有點(diǎn)C在線段AD上某一適當(dāng)位置,才能使總運(yùn)費(fèi)最省,如圖所示,設(shè)C點(diǎn)距D點(diǎn)x km,則

  ∵BD=40,AC=50-x,∴BC=,又設(shè)總水管費(fèi)用為y元,依題意有

  y=3a(50-x)+(0<x<50).

  =-3a+

  令=0,得=3a(a≠0).

  解得x=30.

  在(0,50)上,y只有一個(gè)極值點(diǎn),根據(jù)實(shí)際問(wèn)題的意義,函數(shù)在x=30(km)處取得最小值,此時(shí),AC=50-x=20(km).

  ∴供水站建在A、D之間距甲廠20 km處,可使水管費(fèi)用最省.

  解法二:設(shè)∠BCD=,如圖所示,則

  BC=,CD=40cot().

  ∴AC=50-CD=50-40cot

  設(shè)總的水管費(fèi)用為f(),依題意,有

  f()=3a(50-40cot)+5a·

 。150a+40a

  ∴()=40a

  令()=0,得cos

  根據(jù)問(wèn)題的實(shí)際意義,當(dāng)cos時(shí),函數(shù)取得最小值,此時(shí)

  sin,∴cot,∴AC=50-40cot=20(km),即供水站建在A、D之間距甲廠20 km處,可使水管費(fèi)用最。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,某化工集團(tuán)在一條河流的上、下游分別建有甲、乙兩家化工廠,其中甲廠每天向河道內(nèi)排放污水2萬(wàn)m3,每天流過(guò)甲廠的河水流量是500萬(wàn)m3(含甲廠排放的污水);乙廠每天向河道內(nèi)排放污水1.4萬(wàn)m3,每天流過(guò)乙廠的河水流量是700萬(wàn)m3(含乙廠排放的污水).由于兩廠之間有一條支流的作用,使得甲廠排放的污水在流到乙廠時(shí),有20%可自然凈化.假設(shè)工廠排放的污水能迅速與河水混合,且甲廠上游及支流均無(wú)污水排放.根據(jù)環(huán)保部門的要求,整個(gè)河流中污水含量不能超過(guò)0.2%,為此,甲、乙兩個(gè)工廠都必須各自處理一部分污水.
(Ⅰ)設(shè)甲、乙兩個(gè)化工廠每天各自處理的污水分別為x、y萬(wàn)m3,試根據(jù)環(huán)保部門的要求寫出x、y所滿足的所有條件;
(Ⅱ)已知甲廠處理污水的成本是1200元/萬(wàn)m3,乙廠處理污水的成本是1000元/萬(wàn)m3,在滿足環(huán)保部門要求的條件下,甲、乙兩個(gè)化工廠每天應(yīng)分別各自處理污水多少萬(wàn)m3,才能使這兩個(gè)工廠處理污水的總費(fèi)用最。孔钚】傎M(fèi)用是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有甲、乙兩個(gè)工廠,甲廠位于一直線河岸的岸邊A處,乙廠與甲廠在河的兩側(cè),乙廠位于離河岸40km的B處,乙廠到河岸的垂足D與A相距50km,兩廠要在此岸邊合建一個(gè)供水站C,從供水站到甲廠和乙廠的水管費(fèi)用分別為3a元和5a元,問(wèn)供水站C建在何處才能使水管費(fèi)用最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有甲、乙兩個(gè)工廠,甲廠位于一直線河岸的岸邊A處,乙廠與甲廠在河的同側(cè),乙廠位于離河岸40km的B處,乙廠到河岸的垂足DA相距50km,兩廠要在此岸邊合建一個(gè)供水站C,從供水站到甲廠和乙廠的水管費(fèi)用分別為每千米3a元和5a元,問(wèn)供水站C建在岸邊何處才能使水管費(fèi)用最省?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有甲、乙兩個(gè)工廠,甲廠位于一直線河岸的岸邊A處,乙廠與甲廠在河的同側(cè),乙廠位于離河岸40km的B處,乙廠到河岸的垂足DA相距50km,兩廠要在此岸邊合建一個(gè)供水站C,從供水站到甲廠和乙廠的水管費(fèi)用分別為每千米3a元和5a元,問(wèn)供水站C建在岸邊何處才能使水管費(fèi)用最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某工廠有甲、乙兩個(gè)車間,每個(gè)車間各有編號(hào)為1、2、3、4、5的5名技工.在某天內(nèi)每名技工加工的合格零件的個(gè)數(shù)如下表:
1號(hào)2號(hào)3號(hào)4號(hào)5號(hào)
甲車間457910
乙車間56789
(Ⅰ)分別求出甲、乙兩個(gè)車間技工在該天內(nèi)所加工的合格零件的平均數(shù)及方差,并由此比較兩個(gè)車間技工的技術(shù)水平;
(Ⅱ)質(zhì)檢部門從甲、乙兩個(gè)車間中各隨機(jī)抽取1名技工,對(duì)其加工的零件進(jìn)行檢測(cè),若兩人完成合格零件個(gè)數(shù)之和不小于12個(gè),則稱該工廠“質(zhì)量合格”,求該工廠“質(zhì)量合格”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案