圓內(nèi)接四邊形判定定理的證明,推導(dǎo)出與圓內(nèi)接四邊形性質(zhì)定理相矛盾的結(jié)果,體現(xiàn)了用反證法證明幾何命題的基本思路.反證法是證明問(wèn)題的有效方法,那么與正面證明相比較,反證法有什么特點(diǎn)?它證明問(wèn)題的步驟怎樣?它有什么優(yōu)點(diǎn)?

思路:反證法是一種間接證法,它先是提出一個(gè)與命題的結(jié)論相反的假設(shè),然后從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定原假設(shè),達(dá)到肯定原命題正確的一種方法.

探究:反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是不都是;至少有一個(gè)一個(gè)也沒(méi)有;至少有n個(gè)至多有(n-1)個(gè);至多有一個(gè)至少有兩個(gè);唯一至少有兩個(gè).

    歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木.推理必須嚴(yán)謹(jǐn).導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾,與已知的公理、定義、定理、公式矛盾,與反設(shè)矛盾,自相矛盾.

    反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不止一種),如在上述定理證明中,假設(shè)點(diǎn)D不在圓上,則有點(diǎn)D在圓外和點(diǎn)D在圓內(nèi)兩種情況,必須一一證出這兩種情況都不成立后,才能肯定點(diǎn)D在圓上.

    用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論.

對(duì)于一些從正面難以說(shuō)明的問(wèn)題,反證法往往有著出奇制勝的作用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:選修設(shè)計(jì)數(shù)學(xué)A4-1人教版 人教版 題型:022

圓內(nèi)接四邊形的判定定理.

(1)定理:如果一個(gè)四邊形的對(duì)角________,那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓.

(2)符號(hào)語(yǔ)言表述:在四邊形ABCD中,如果∠B+∠D=________或∠A+∠C=180°,那么四邊形ABCD內(nèi)接于圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:選修設(shè)計(jì)數(shù)學(xué)A4-1人教版 人教版 題型:047

圓內(nèi)接四邊形判定定理的推論的證明..

已知:如圖,四邊形ABCD,延長(zhǎng)AB到E,∠EBC=∠CDA.

求證:A、B、C、D四點(diǎn)共圓.

查看答案和解析>>

同步練習(xí)冊(cè)答案