已知{an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和,且a2=2,S3=7.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2an+1+1(n∈N*),求數(shù)列{
1
bnbn+1
}的前n項和Tn
考點:數(shù)列的求和,等比數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知條件,利用等比數(shù)列的通項公式和前n項和公式列出方程組,求出等比數(shù)列的首項和公比,由此能求出數(shù)列{an}的通項公式.
(Ⅱ)由an=2n-1,bn=log2an+1+1推導(dǎo)出bn=n,從而得到
1
bnbn+1
=
1
n
-
1
n+1
,由此能求出利用裂項求和法能求出數(shù)列{
1
bnbn+1
}的前n項和Tn
解答: 解:(Ⅰ)設(shè)數(shù)列{an}的公比為q,
∵{an}是公比大于1的等比數(shù)列,且a2=2,S3=7,
a1q=2
a1+2+a1q2=7
,且q>1,
解得
a1=1
q=2
,或
a1=4
q=
1
2
,(舍).
an=2n-1
(Ⅱ)∵an=2n-1,
∴bn=log2an+1+1=log22n-1+1=n,
1
bnbn+1
=
1
n(n+1)
=
1
n
-
1
n+1
,
∴Tn=(1-
1
2
)=(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1
點評:本題考查數(shù)列的通項公式和前n項和公式的求法,是中檔題,解題時要認真審題,注意裂項求和法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=xsinx+cosx的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-1,設(shè)曲線y=f(x)在點(xn,yn)處的切線與x軸的交點為(xn+1,0),其中x1為正實數(shù).
(1)用xn表示xn+1;
(2)x1=2,若an=lg
xn+1
xn-1
,試證明數(shù)列{an}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(3)若數(shù)列{bn}的前n項和Sn=
n(n+1)
2
,記數(shù)列{an•bn}的前n項和Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a<2,解不等式a(x+a)<2x+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的三個頂點是A﹙-1,4﹚,B﹙-2,-1﹚,C﹙2,3﹚.
﹙1﹚求BC邊的高所在直線方程;
﹙2﹚求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷f(x)=2x+
1
x
的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x),g(x)都是定義在R上的函數(shù),g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=ax•g(x)(a>0且a≠1),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
.若數(shù)列{
f(n)
g(n)
}的前n項和大于62,則n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1
2
e-2x
,則f(x)的導(dǎo)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={a,b,c,d},集合A={a,d},則∁uA等于( 。
A、{a,b,c,d}
B、{b,c}
C、{a,d}
D、{b,d}

查看答案和解析>>

同步練習(xí)冊答案