設拋物線y2=2px(p>0)的焦點為F,已知A,B為拋物線上的兩個動點,且滿足∠AFB=60°,過弦AB的中點M作拋物線準線的垂線MN,垂足為N,則
|MN|
|AB|
的最大值為
 
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:設|AF|=a,|BF|=b,連接AF、BF.由拋物線定義得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2-3ab,進而根據(jù)基本不等式,求得|AB|的取值范圍,從而得到本題答案.
解答: 解:設|AF|=a,|BF|=b,
由拋物線定義,得AF|=|AQ|,|BF|=|BP|
在梯形ABPQ中,∴2|MN|=|AQ|+|BP|=a+b.
由余弦定理得,
|AB|2=a2+b2-2abcos60°=a2+b2-ab
配方得,|AB|2=(a+b)2-3ab,
又∵ab≤(
a+b
2
) 2,
∴(a+b)2-3ab≥(a+b)2-
3
4
(a+b)2=
1
4
(a+b)2
得到|AB|≥
1
2
(a+b).
|MN|
|AB|
≤1,即
|MN|
|AB|
的最大值為1.
故答案為:1
點評:本題在拋物線中,利用定義和余弦定理求
|MN|
|AB|
的最大值,著重考查拋物線的定義和簡單幾何性質(zhì)、基本不等式求最值和余弦定理的應用等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a>1,b>0,若a+b=2,則
1
a-1
+
2
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=(x+1)(x2+ax+b),(a,b∈R)的圖象關于點(2,0)對稱,且對任意實數(shù)x≥m時,f(x)≥0恒成立,則實數(shù)m的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設直線xcosθ-
3
y+2=0(θ∈R)的傾斜角為α,則角α的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知θ∈(
π
2
,π),sinθ=
4
5
,則sin(θ+
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=kx+1 與拋物線x2=4y 相交于A,B兩點,且該拋物線過A,B兩點的切線交于C,點C的軌跡記為E,M,N是E上不同的兩點,直線AM,BN都與y軸平行,則
FM
FN
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線M:y2=4x與圓N:(x-1)2+y2=r2(其中r為常數(shù),r>0).過點(1,0)的直線l交拋物線M于A,B兩點,交圓N于C,D兩點,若滿足|AC|=|BD|的直線l恰有三條,則r的范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算[(-2)3] 
1
3
+log24=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2sinx(x∈R)是( 。
A、奇函數(shù)B、偶函數(shù)
C、增函數(shù)D、減函數(shù)

查看答案和解析>>

同步練習冊答案