已知函數(shù)f(x)=ax3+bx2-x+c(a,b,c∈R且a≠0),
(1)若b=1且f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間,求a的取值范圍;
(2)若存在實數(shù)x1,x2(x1≠x2)滿足f(x1)=f(x2),是否存在實數(shù)a,b,c使f(x)在
x1+x22
處的切線斜率為0,若存在,求出一組實數(shù)a,b,c否則說明理由.
分析:(1)首先由f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間,得(2,+∞)上存在區(qū)間使f'(x)>0;然后根據(jù)f'(x)=3ax2+2x-1為二次函數(shù),則對a進行分類討論;特別是a<0時,有f'(x)=3ax2+2x-1=0在(2,+∞)上有一解或兩解兩種情況;最后列出相應(yīng)的不等式或不等式組解之即可.
(2)首先由f(x1)=f(x2)代入f(x)整理可得a(x12+x1x2+x22)+b(x1+x2)-1=0;再化簡可得f′(
x1+x2
2
)=
-
a
4
(x1-x22≠0;最后判斷出不存在這樣的實數(shù)a,b,c滿足條件.
解答:解:(1)當b=1時f'(x)=3ax2+2x-1,f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間,即f'(x)在(2,+∞)上存在區(qū)間使f'(x)>0.
①a>0時,f'(x)=3ax2+2x-1是開口向上的拋物線.
顯然f'(x)在(2,+∞)上存在區(qū)間,使f'(x)>0即a>0適合.
②a<0時,f'(x)=3ax2+2x-1是開口向下的拋物線.
要使f'(x)在(2,+∞)上存在區(qū)間有f'(x)>0,則f'(x)=3ax2+2x-1=0在(2,+∞)上有一解或兩解.
即f'(2)>0或
△>0
f′(2)≤0
-
1
3a
>2
?a>-
1
4
或無解,
a<0∴a∈(-
1
4
,0)

綜合得a∈(-
1
4
,0)∪(0,+∞)

(2)不存在實數(shù)a,b,c滿足條件.
事實上,由f(x1)=f(x2)得:a(x13-x23)+b(x12-x22)-(x1-x2)=0
∵x1≠x2∴a(x12+x1x2+x22)+b(x1+x2)-1=0
又f'(x)=3ax2+2bx-1
f′(
x1+x2
2
)=3a(
x1+x2
2
)2+2b•
x1+x2
2
-1

=3a•
x
2
1
+
x
2
2
+2x1x2
4
+1-a(
x
2
1
+x1x2+
x
2
2
)-1=-
a
4
(x1-x2)2

∵a≠0且x1-x2≠0∴f′(
x1+x2
2
)≠0

故不存在實數(shù)a,b,c滿足條件.
點評:本題考查了函數(shù)單調(diào)性與其導(dǎo)數(shù)的關(guān)系,及導(dǎo)數(shù)的幾何意義等基本知識;同時考查了學生分類討論的思想方法與代數(shù)運算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案