雙曲線
x2
2
-
y2
3
=1
的離心率為( 。
A.
13
2
B.
13
3
C.
10
2
D.
10
3
由雙曲線
x2
2
-
y2
3
=1
可得a2=2,b2=3,
∴離心率e=
c
a
=
c2
a2
=
1+
b2
a2
=
1+
3
2
=
10
2

故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)P與雙曲線
x2
2
-
y2
3
=1
的兩個(gè)焦點(diǎn)F1、F2的距離之和為6.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)
PF1
PF2
=3
,求△PF1F2的面積;
(3)若已知D(0,3),M、N在曲線C上,且
DM
DN
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)P與雙曲線
x2
2
-
y2
3
=1的兩個(gè)焦點(diǎn)F1、F2的距離之和為定值,且cos∠F1PF2的最小值為-
1
9
,則動(dòng)點(diǎn)P的軌跡方程為
x2
18
+
y2
13
=1
x2
18
+
y2
13
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•豐臺(tái)區(qū)二模)雙曲線
x2
2
-
y2
3
=1
的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)P與雙曲線
x2
2
-
y2
3
=1
的兩個(gè)焦點(diǎn)F1、F2的距離之和為6.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若已知D(0,3),點(diǎn)M、N在動(dòng)點(diǎn)P的軌跡上,且
DM
DN
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知?jiǎng)狱c(diǎn)P與雙曲線
x2
2
-
y2
3
=1
的兩個(gè)焦點(diǎn)F1、F2的距離之和為6.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)
PF1
PF2
=3
,求△PF1F2的面積;
(3)若已知D(0,3),M、N在曲線C上,且
DM
DN
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案