13.定義區(qū)間(c,d),[c,d),(c,d],[c,d]的長度均為d-c,其中d>c.已知函數(shù)y=|2x-1|的定義域?yàn)閇a,b],值域?yàn)?[{0,\frac{1}{2}}]$,則區(qū)間[a,b]長度的最大值與最小值的差$lo{g}_{2}\frac{3}{2}$.

分析 函數(shù)的圖象,如圖所示,y=|2x-1|=$\frac{1}{2}$,x=-1或$lo{g}_{2}\frac{3}{2}$,求出區(qū)間[a,b]長度的最大值與最小值,即可得出結(jié)論.

解答 解:函數(shù)的圖象,如圖所示,y=|2x-1|=$\frac{1}{2}$,x=-1或$lo{g}_{2}\frac{3}{2}$,
故[a,b]的長度的最大值為$lo{g}_{2}\frac{3}{2}$-(-1)=$lo{g}_{2}\frac{3}{2}$+1,最小值為0-(-1)=1,則區(qū)間[a,b]的長度的最大值與最小值的差為$lo{g}_{2}\frac{3}{2}$
故答案為$lo{g}_{2}\frac{3}{2}$.

點(diǎn)評 考查學(xué)生理解掌握指數(shù)函數(shù)定義域和值域的能力,運(yùn)用指數(shù)函數(shù)圖象增減性解決數(shù)學(xué)問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖是150輛汽車通過某路段時(shí)速度的頻率分布直方圖,則速度在[50,70)的汽車大約有(  )
A.120輛B.90輛C.80輛D.60輛

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x-alnx,g(x)=-$\frac{1+a}{x}$(a∈R).
(Ⅰ)若a=1,求函數(shù)f(x)的極值;
(Ⅱ)設(shè)函數(shù)h(x)=f(x)-g(x),求函數(shù)h(x)的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間[1,e=2.71828…)上不存在x0,使得f(x0)<g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.半徑為1m的圓中,60°的圓心角所對的弧的長度為(  )
A.$\frac{π}{6}$mB.$\frac{π}{3}$mC.$\frac{2π}{3}$mD.1m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}滿足:a1=3,an=an-1+2n-1(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(2)令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn=b1+2b2+…+2n-1bn(n∈N*),求證:Tn<$\frac{1}{6}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如果存在非零常數(shù)C,對于函數(shù)y=f(x)定義域上的任意x,都有f(x+C)>f(x)成立,那么稱函數(shù)為“Z函數(shù)”.
(Ⅰ)若g(x)=2x,h(x)=x2,試判斷函數(shù)g(x)和h(x)是否是“Z函數(shù)”?若是,請證明:若不是,主說明理由:
(Ⅱ)求證:若y=f(x)(x∈R)是單調(diào)函數(shù),則它是“Z函數(shù)”;
(Ⅲ)若函數(shù)f(x)=ax3+2x2+3是“Z函數(shù)”,求實(shí)數(shù)a滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知α:1≤x≤3,β:m+1≤x≤m+4,且α是β的充分條件,則實(shí)數(shù)m的取值范圍為[-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知扇形的圓心角為72°,半徑為5,則扇形的面積S=5π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=2sin(2x-\frac{π}{3})+2$.
(1)求f(x)的對稱中心.(2)當(dāng)x∈[$\frac{π}{4}$,$\frac{π}{2}$]時(shí)f(x)值域.

查看答案和解析>>

同步練習(xí)冊答案