【題目】過雙曲線的右焦點且垂直于軸的直線與雙曲線交于兩點,為虛軸的一個端點,且為鈍角三角形,則此雙曲線離心率的取值范圍為__________.
【答案】
【解析】分析:設出雙曲線的左焦點,令x=﹣c,代入雙曲線的方程,解得A,B的坐標,討論∠DAB為鈍角,可得<0,或∠ADB為鈍角,可得<0,運用向量數量積的坐標表示,再由離心率公式和范圍,即可得到所求范圍.
詳解:設雙曲線的左焦點F1(﹣c,0),
令x=﹣c,可得y=±=±,
可得A(﹣c,),B(﹣c,﹣),
又設D(0,b),可得=(c,b﹣),
=(0,﹣),=(﹣c,﹣b﹣),
由△ABD為鈍角三角形,可能∠DAB為鈍角,可得<0,
即為0﹣(b﹣)<0,
化為a>b,即有a2>b2=c2﹣a2,
可得c2<2a2,即e=<,
又e>1,可得1<e<,
可能△ADB中,∠ADB為鈍角,可得<0,
即為c2﹣(+b)(﹣b)<0,
化為c4﹣4a2c2+2a4>0,
由e=,可得e4﹣4e2+2>0,
又e>1,可得e>.
綜上可得,e的范圍為(1,)∪(.+∞).
故答案為:
科目:高中數學 來源: 題型:
【題目】如圖,半徑為2的圓內有兩條圓弧,一質點M自點A開始沿弧A-B-C-O-A-D-C做勻速運動,則其在水平方向(向右為正)的速度的圖像大致為( )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的上、下焦點分別為,上焦點到直線的距離為3,橢圓的離心率.
(1)求橢圓的方程;
(2)橢圓,設過點斜率存在且不為0的直線交橢圓于兩點,試問軸上是否存在點,使得?若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某二手交易市場對某型號的二手汽車的使用年數()與銷售價格(單位:萬元/輛)進行整理,得到如下的對應數據:
使用年數 | 2 | 4 | 6 | 8 | 10 |
銷售價格 | 16 | 13 | 9.5 | 7 | 4.5 |
(I)試求關于的回歸直線方程.
(參考公式:,)
(II)已知每輛該型號汽車的收購價格為萬元,根據(I)中所求的回歸方程,預測為何值時,銷售一輛該型號汽車所獲得的利潤最大?(利潤=銷售價格-收購價格)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條規(guī)定:機動車行經人行橫道時,應當減速慢行;遇到行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”.下表是某十字路口監(jiān)控設備所抓拍的6個月內駕駛員不“禮讓斑馬線”行為的統計數據:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“禮讓斑馬線”駕駛員人數 | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)請根據表中所給前5個月的數據,求不“禮讓斑馬線”的駕駛員人數與月份之間的回歸直線方程;
(Ⅱ)若該十字路口某月不“禮讓斑馬線”駕駛員人數的實際人數與預測人數之差小于5,則稱該十字路口“禮讓斑馬線”情況達到“理想狀態(tài)”.試根據(Ⅰ)中的回歸直線方程,判斷6月份該十字路口“禮讓斑馬線”情況是否達到“理想狀態(tài)”?
(Ⅲ)若從表中3、4月份分別選取4人和2人,再從所選取的6人中任意抽取2人進行交規(guī)調查,求抽取的兩人恰好來自同一月份的概率.
參考公式: ,.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com