已知向量滿足|
a
|=1,|
b
|=2
,且
a
b
方向上的投影等于
b
a
方向上的看投影,則|
a
-
b
|
=
5
5
分析:根據(jù)
a
b
方向上的投影等于
b
a
方向上的投影得到兩向量垂直,然后把要求的模取平方運(yùn)算,求出模后開(kāi)方即可.
解答:解:設(shè)向量
a
與向量
b
的夾角為θ,則由題意可知θ=
π
2
,
所以|
a
-
b
|2=(
a
-
b
)2=(
a
)2-2
a
b
+(
b
)2

=|
a
|2-2|
a
||
b
|cos
π
2
+|
b
|2=12+22=5

所以|
a
-
b
|=
5

故答案為
5
點(diǎn)評(píng):本題是向量模長(zhǎng)的運(yùn)算,條件中給出兩個(gè)向量的模和兩向量的夾角,代入數(shù)量積的公式運(yùn)算即可,只是題目所給的向量要應(yīng)用向量的性質(zhì)來(lái)運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量滿足|
a
|=2|
b
|,若p:關(guān)于x的方程x2+|
a
|x+
a
b
=0沒(méi)有實(shí)數(shù)根;q:向量
a
,
b
的夾角θ∈[0,
π
6
),則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知向量
p
=
a
+t
b
,
q
=
c
+s
d
(s、t是任意實(shí)數(shù)),其中
a
=(1,2),
b
=(3,0),
c
=(1,-1),
d
=(3,2),求向量
p
,
q
交點(diǎn)的坐標(biāo);
(2)已知
a
=(x+1,0),
b
=(0,x-y),
c
=(2,1),求滿足等式x
a
+
b
=
c
的實(shí)數(shù)x、y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•惠州二模)已知向量,
a
=(m,1),
b
=(sinx,cosx),f(x)=
a
b
且滿足f(
π
2
)=1.
(1)求函數(shù)y=f(x)的解析式;并求函數(shù)y=f(x)的最小正周期和最值及其對(duì)應(yīng)的x值;
(2)銳角△ABC中,若f(
π
12
)=
2
sinA,且AB=2,AC=3,求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省淄博市高三第一學(xué)期期末數(shù)學(xué)理卷 題型:選擇題

在△ABC中,已知向量滿足,,

,則△ABC為

 A. 三邊均不相等的三角形    B. 直角三角形 

C.  等腰非等邊三角形         D. 等邊三角形

 

查看答案和解析>>

同步練習(xí)冊(cè)答案