分析 (1)求出${f}^{'}(x)=\frac{1}{x}-\frac{a}{(x+1)^{2}}$=$\frac{{x}^{2}+(2-a)x+1}{x(x+1)^{2}}$,由題意f′(x)=0在(1,2)上只有一個根,從而f′(1)•f′(2)<0,由此能求出a的取值范圍.
(2)推導出$\frac{g({x}_{2})+{x}_{2}-[g({x}_{1})+{x}_{1}]}{{x}_{2}-{x}_{1}}$<0,設h(x)=g(x)+x,則y=h(x)在(0,2]上是減函數(shù),由此利用導數(shù)性質(zhì)能求出a的取值范圍.
解答 解:(1)∵函數(shù)φ(x)=$\frac{a}{x+1}$,a>0,函數(shù)f(x)=lnx+φ(x),
∴${f}^{'}(x)=\frac{1}{x}-\frac{a}{(x+1)^{2}}$=$\frac{{x}^{2}+(2-a)x+1}{x(x+1)^{2}}$,
∵函數(shù)f(x)=lnx+φ(x)在(1,2)上只有一個極值點,
∴f′(x)=0在(1,2)上只有一個根,
∵x>0,∴f′(1)•f′(2)=$\frac{1+2-a+1}{1×(1+1)^{2}}$×$\frac{4+(2-a)×2+1}{2(2+1)^{2}}$<0,
解得4<a<$\frac{9}{2}$,
∴a的取值范圍是(4,$\frac{9}{2}$).
(2)∵$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$<-1,∴$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$+1<0,
∴$\frac{g({x}_{2})+{x}_{2}-[g({x}_{1})+{x}_{1}]}{{x}_{2}-{x}_{1}}$<0,
設h(x)=g(x)+x,則y=h(x)在(0,2]上是減函數(shù),
當1<x≤2時,h(x)=lnx+$\frac{a}{x+1}$+x,${h}^{'}(x)=\frac{1}{x}-\frac{a}{(x+1)^{2}}+1$,
令h′(x)≤0,得a≥$\frac{(x+1)^{2}}{x}+(x+1)^{2}$=${x}^{2}+3x+\frac{1}{x}+3$對x∈(1,2]恒成立,
設m(x)=x2+3x+$\frac{1}{x}$+3,則m′(x)=2x+3-$\frac{1}{{x}^{2}}$,
∵1<x≤2,∴${m}^{'}(x)=2x+3-\frac{1}{{x}^{2}}$,
∵1<x≤2,∴${m}^{'}(x)=2x+3-\frac{1}{{x}^{2}}$>0,
∴m(x)在(1,2]上是增函數(shù),
則當x=2時,m(x)有最大值為$\frac{27}{2}$,則a≥$\frac{27}{2}$,
當0<x≤1時,h(x)=-lnx+$\frac{a}{x+1}$+x,${h}^{'}(x)=-\frac{1}{x}-\frac{a}{(x+1)^{2}}+1$,
令h′(x)≤0,得a≥-$\frac{(x+1)^{2}}{x}$+(x+1)2=${x}^{2}+x-\frac{1}{x}-1$,
設t(x)=${x}^{2}+x-\frac{1}{x}-1$,
則${t}^{'}(x)=2x+1+\frac{1}{{x}^{2}}$>0,
∴t(x)在(0,1]上是增函數(shù),∴t(x)≤t(1)=0,則a≥0.
綜上所述:a的取值范圍是[$\frac{27}{2},+∞$).
點評 本題考查實數(shù)的取值范圍的求法,是中檔題,解題時要認真審題,注意導數(shù)性質(zhì)、構造法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ¬p:?x∈(0,+∞),sinx≥x | B. | ¬p:?x0∈(0,+∞),sinx0≥x0 | ||
C. | ¬p:?x∈(-∞,0],sinx≥x | D. | ¬p:?x0∈(-∞,0],sinx0≥x0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 平行于同一條直線的兩條直線相互平行 | |
B. | 平行于同一平面的兩條直線相互平行 | |
C. | 垂直于同一條直線的兩條直線相互垂直 | |
D. | 垂直于同一平面的兩條直線相互垂直 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com