7.設(shè)函數(shù)y=f(x)的圖象與y=2x+a的圖象關(guān)于y=-x對稱,且f(-2)+f(-4)=1,則a=2.

分析 設(shè)(x,y)是函數(shù)y=f(x)的圖象上任一點,則它關(guān)于y=-x的對稱點(-y,-x),在y=2x+a的圖象上,進而可得函數(shù)y=f(x)的解析式,結(jié)合f(-2)+f(-4)=1,可得a值.

解答 解:設(shè)(x,y)是函數(shù)y=f(x)的圖象上任一點,
則它關(guān)于y=-x的對稱點為(-y,-x),
即(-y,-x)在y=2x+a的圖象上,
∴-x=2-y+a,
即y=-log2(-x)+a,
∴f(-2)+f(-4)=-3+2a=1,
解得:a=2,
故答案為:2.

點評 本題考查的知識點是函數(shù)圖象的對稱變換,函數(shù)解析式的求法,函數(shù)求值,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.下列命題中,真命題是( 。
A.?x∈R,2x>x2B.若a>b,c>d,則 a-c>b-d
C.?x∈R,ex<0D.ac2<bc2是a<b的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知圓C:(x-1)2+y2=$\frac{11}{2}$內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B兩點.
(1)當l經(jīng)過圓心C時,求直線l的方程;
(2)當直線l的斜率k=1時,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)φ(x)=$\frac{a}{x+1}$,a>0.
(1)若函數(shù)f(x)=lnx+φ(x)在(1,2)上只有一個極值點,求a的取值范圍;
(2)若g(x)=|lnx|+φ(x),且對任意x1,x2∈(0,2],且x1≠x2,都有$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$<-1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在△ABC中,已知a=6,b=$3\sqrt{2}$,A=45°,則B的大小為( 。
A.30°B.60°C.150°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設(shè)a、b、c分別是△ABC三個內(nèi)角A、B、C所對的邊,則a2=c(b+c)是A=2C成立的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下面4個散點圖中,不適合用線性回歸模型擬合的兩個變量是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知命題p:“對任意x∈R,ax2-ax+1>0恒成立”,命題q:“若x+y=1,對任意的x>0,y>0,$\frac{1}{2x}+\frac{1}{2y}$≥a恒成立.”,若“p或q”為真,“p且q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=x3+bx2+cx+d在區(qū)間[-1,2]上是減函數(shù),則b-c的最小值為-$\frac{9}{2}$.

查看答案和解析>>

同步練習冊答案