【題目】如圖,在四棱錐O﹣ABCD中,OA⊥底面ABCD,且底面ABCD是邊長(zhǎng)為2的正方形,且OA=2,M,N分別為OA,BC的中點(diǎn).
(1)求證:直線MN平面OCD;
(2)求點(diǎn)B到平面DMN的距離.
【答案】(1)證明見(jiàn)詳解;(2)
【解析】
(1)構(gòu)造平面,使之與平面平行,再通過(guò)面面平行證明線面平行即可;
(2)通過(guò)變換頂點(diǎn),利用等體積法求得點(diǎn)到平面的距離.
(1)取中點(diǎn)為,連接,如下圖所示:
在中,因?yàn)?/span>分別是的中點(diǎn),
故//;
在正方形中,因?yàn)?/span>分別是的中點(diǎn),
故//;
又因?yàn)?/span>,平面,
,平面,
故平面//平面,
又因?yàn)?/span>平面,故//平面,即證.
(2)連接,如下圖所示:
因?yàn)?/span>點(diǎn)為中點(diǎn),故
又因?yàn)?/span>平面,且
故.
又在中,容易知,
故邊上的高為,
故.
設(shè)點(diǎn)到平面的距離為,
則
解得.
故點(diǎn)到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市交通部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)已知滿意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)點(diǎn),兩點(diǎn),且圓心C在直線上.
(1)求圓C的方程;
(2)設(shè),對(duì)圓C上任意一點(diǎn)P,在直線MC上是否存在與點(diǎn)M不重合的點(diǎn)N,使是常數(shù),若存在,求出點(diǎn)N坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=,g(x)=(a>0,且a≠1).
(1)求函數(shù)φ(x)=f(x)+g(x)的定義域;
(2)試確定不等式f(x)≤g(x)中x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.,e為自然對(duì)數(shù)的底數(shù).
(1)如果函數(shù)在(0, )上單調(diào)遞增,求m的取值范圍;
(2)設(shè),,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和為4,設(shè)點(diǎn)的軌跡為,直線與交于兩點(diǎn)。
(Ⅰ)寫出的方程;
(Ⅱ)若,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是y=f(x)導(dǎo)函數(shù)的圖象,對(duì)于下列四個(gè)判斷:
①f(x)在[-2,-1]上是增函數(shù);
②x=-1是f(x)的極小值點(diǎn);
③f(x)在[-1,2]上是增函數(shù),在[2,4]上是減函數(shù);
④x=3是f(x)的極小值點(diǎn).
其中判斷正確的是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是矩形,沿對(duì)角線將折起,使得點(diǎn)在平面上的射影恰好落在邊上.
(1)求證:平面平面;
(2)當(dāng)時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線: 的焦點(diǎn)為,過(guò)的直線交拋物線于點(diǎn),當(dāng)直線的傾斜角是時(shí), 的中垂線交軸于點(diǎn).
(1)求的值;
(2)以為直徑的圓交軸于點(diǎn),記劣弧的長(zhǎng)度為,當(dāng)直線繞點(diǎn)旋轉(zhuǎn)時(shí),求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com