【題目】有下列4個命題:

1)“若,則互為相反數(shù)”的否命題

2)“若,則”的逆否命題

3)“若,則”的否命題

4)“若,則有實數(shù)根”的逆命題

其中真命題的個數(shù)是(

A.1B.2C.3D.4

【答案】A

【解析】

可以先寫出各選項對應(yīng)的命題,判斷真假,也可以利用等價命題來判斷:一個命題的逆命題與否命題等價,原命題與逆否命題等價.

1)“若,則互為相反數(shù)”的否命題為“若,則不互為相反數(shù)”是真命題;

2)“若,則”是假命題,其逆否命題與原命題等價,所以其逆否命題是假命題;

3)“若,則”的否命題為“若,則”是假命題,比如滿足,但

4)“若,則有實數(shù)根”的逆命題為“若有實數(shù)根,則”為假命題,因為不一定推出

所以其中真命題的個數(shù)為1,

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國古代第一部數(shù)學(xué)專著,成于公元一世紀(jì)左右,系統(tǒng)總結(jié)了戰(zhàn)國、秦、漢時期的數(shù)學(xué)成就.其中《方田》一章中記載了計算弧田(弧田就是由圓弧和其所對弦所圍成弓形)的面積所用的經(jīng)驗公式:弧田面積=(弦×矢+矢×矢),公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,弦長為的弧田.其實際面積與按照上述經(jīng)驗公式計算出弧田的面積之間的誤差為( )平方米.(其中,

A. 15 B. 16 C. 17 D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最大值為.

(1)若關(guān)于的方程的兩個實數(shù)根為,求證:;

(2)當(dāng)時,證明函數(shù)在函數(shù)的最小零點處取得極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,動點P,Q從點出發(fā)在單位圓上運動,點P按逆時針方向每秒鐘轉(zhuǎn)弧度,點Q按順時針方向每秒鐘轉(zhuǎn)弧度,則P,Q兩點在第2019次相遇時,點P的坐標(biāo)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某育種基地對某個品種的種子進(jìn)行試種觀察,經(jīng)過一個生長期培養(yǎng)后,隨機(jī)抽取株作為樣本進(jìn)行研究。株高在及以下為不良,株高在之間為正常,株高在及以上為優(yōu)等。下面是這個樣本株高指標(biāo)的莖葉圖和頻率分布直方圖,但是由于數(shù)據(jù)遞送過程出現(xiàn)差錯,造成圖表損毀。請根據(jù)可見部分,解答下面的問題:

1)求的值并在答題卡的附圖中補(bǔ)全頻率分布直方圖;

2)通過頻率分布直方圖估計這株株高的中位數(shù)(結(jié)果保留整數(shù));

3)從育種基地內(nèi)這種品種的種株中隨機(jī)抽取2株,記表示抽到優(yōu)等的株數(shù),由樣本的頻率作為總體的概率,求隨機(jī)變量的分布列(用最簡分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的個數(shù)是(

①球的半徑是球面上任意一點與對球心的連線;

②球面上任意兩點的連線是球的直徑;

③用一個平面截一個球,得到的截面是一個圓;

④用一個平面截一個球,得到的截面是一個圓面;

⑤以半圓的直徑所在直線為軸旋轉(zhuǎn)形成的曲面叫做球;

⑥空間中到定點的距離等于定長的所有的點構(gòu)成的曲面是球面.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是一質(zhì)點做簡諧運動的圖象,則下列結(jié)論正確的是(

A.該質(zhì)點的運動周期為0.7s

B.該質(zhì)點的振幅為5

C.該質(zhì)點在0.1s0.5s時運動速度為零

D.該質(zhì)點的運動周期為0.8s

E.該質(zhì)點在0.3s0.7s時運動速度為零

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)求的定義域

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求函數(shù)的圖象在處的切線方程;

(2)若函數(shù)在定義域上為單調(diào)增函數(shù)。

①求的最大整數(shù)值;

②證明:

查看答案和解析>>

同步練習(xí)冊答案