【題目】已知 ,記關于 的不等式 的解集為
(1)若 ,求實數(shù) 的取值范圍;
(2)若 ,求實數(shù) 的取值范圍.

【答案】
(1)

解:依題意有: ,

,則 ,∴

,則 ,∴ ,

,則 ,無解,

綜上所述, 的取值范圍為 ;


(2)

由題意可知,當 時, 恒成立,

恒成立,

,當 時恒成立,


【解析】(1)a-3 M,比必定滿足條件f(x)<g(x),將其代入即可;(2) ,則對任意的x M,有f(x)<g(x)成立。
【考點精析】掌握集合的含義和元素與集合關系的判斷是解答本題的根本,需要知道把研究的對象統(tǒng)稱為元素,把一些元素組成的總體叫做集合;對象與集合的關系是,或者,兩者必居其一.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一直函數(shù),其中
(1)討論的單調(diào)性
(2)設曲線軸正半軸的交點為,曲線在點處的切線方程為,求證:對于任意的正實數(shù),都有
(3)若關于的方程為實數(shù))有兩個正實根,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工件的三視圖如圖所示,現(xiàn)將該工件通過切割,加工成一個體積盡可能大的長方體新工件,并使新工件的一個面落在原工件的一個面內(nèi),則原工件材料的利用率為(材料利用率=

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C: + =1,直線l: (t為參數(shù))
(1)寫出曲線C的參數(shù)方程,直線l的普通方程.
(2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形 為菱形,四邊形 為平行四邊形,設 相交于點 ,

(1)證明:平面 平面
(2)若 與平面 所成角為60°,求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在(0,+∞)的函數(shù)f(x),其導函數(shù)為f′(x),滿足:f(x)>0且 總成立,則下列不等式成立的是(
A.e2e+3f(e)<eπ3f(π)
B.e2e+3f(π)>eπ3f(e)
C.e2e+3f(π)<eπ3f(e)
D.e2e+3f(e)>eπ3f(π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,以x軸的正半軸為極軸建立極坐標系.設曲線C的參數(shù)方程為 (α是參數(shù)),直線l的極坐標方程為ρcos(θ+ )=2
(1)求直線l的直角坐標方程和曲線C的普通方程;
(2)設點P為曲線C上任意一點,求點P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,E為對角線B1D上的一點,M,N為對角線AC上的兩個動點,且線段MN的長度為1.
⑴當N為對角線AC的中點且DE= 時,則三棱錐E﹣DMN的體積是
⑵當三棱錐E﹣DMN的體積為 時,則DE=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若f(x)﹣f(﹣x)=0有四個不同的根,則m的取值范圍是(
A.(0,2e)
B.(0,e)
C.(0,1)
D.(0,

查看答案和解析>>

同步練習冊答案