已知橢圓
x2
4
+
y2
3
=1
的兩焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P是橢圓內(nèi)部的一點(diǎn),則|PF1|+|PF2|的取值范圍為_(kāi)_____.
∵橢圓
x2
4
+
y2
3
=1
的兩焦點(diǎn)為F1,F(xiàn)2,
點(diǎn)P是橢圓內(nèi)部的一點(diǎn),
∴當(dāng)點(diǎn)P在線段F1F2上時(shí),
[|PF1|+|PF2|]min=|F1F2|=2
4-3
=2,
當(dāng)點(diǎn)P在橢圓上時(shí),
[|PF1|+|PF2|]max=2
4
=4.
∵點(diǎn)P是橢圓內(nèi)部的一點(diǎn),
∴|PF1|+|PF2|的取值范圍是[2,4).
故答案為:[2,4)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓x2+
ky2
5
=1
的一個(gè)焦點(diǎn)是(0,2),那么實(shí)數(shù)k的值為( 。
A.-25B.25C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)分別為F1,F(xiàn)2,若該橢圓上存在一點(diǎn)P使得∠F1PF2=60°,則橢圓離心率的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若兩集合A=[0,3],B=[0,3],分別從集合A、B中各任取一個(gè)元素m、n,即滿足m∈A,n∈B,記為(m,n),
(Ⅰ)若m∈Z,n∈Z,寫出所有的(m,n)的取值情況,并求事件“方程
x2
m+1
+
y2
n+1
=1
所對(duì)應(yīng)的曲線表示焦點(diǎn)在x軸上的橢圓”的概率;
(Ⅱ)求事件“方程
x2
m+1
+
y2
n+1
=1
所對(duì)應(yīng)的曲線表示焦點(diǎn)在x軸上的橢圓,且長(zhǎng)軸長(zhǎng)大于短軸長(zhǎng)的
2
倍”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)A(-1,0)、B(1,0),P(x0,y0)是直線y=x+2上任意一點(diǎn),以A、B為焦點(diǎn)的橢圓過(guò)點(diǎn)P.記橢圓離心率e關(guān)于x0的函數(shù)為e(x0),那么下列結(jié)論正確的是(  )
A.e與x0一一對(duì)應(yīng)
B.函數(shù)e(x0)無(wú)最小值,有最大值
C.函數(shù)e(x0)是增函數(shù)
D.函數(shù)e(x0)有最小值,無(wú)最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

點(diǎn)A、B分別是橢圓
x2
36
+
y2
20
=1長(zhǎng)軸的左、右焦點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn).點(diǎn)P在橢圓上,且位于x軸上方,PA⊥PF.
(1)求P點(diǎn)的坐標(biāo);
(2)設(shè)M是橢圓長(zhǎng)軸AB上的一點(diǎn),M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)P使
PF1
PF2
=0
,則|PF1|•|PF2|=(  )
A.b2B.2b2C.2bD.b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓
x2
9
+
y2
2
=1的焦點(diǎn)為F1、F2,點(diǎn)P在橢圓上,若|PF1|=4,則|PF2|=______,∠F1PF2的大小為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)A、B為橢圓
x2
4
+
y2
2
=1
長(zhǎng)軸的兩個(gè)端點(diǎn),點(diǎn)M為該橢圓上位于第一象限內(nèi)的任意一點(diǎn),直線AM、BM分別與直線l:x=2
2
相交于點(diǎn)P、Q.
(1)若點(diǎn)P、Q關(guān)于x軸對(duì)稱,求點(diǎn)M的坐標(biāo);
(2)證明:橢圓右焦點(diǎn)F在以線段PQ為直徑的圓上.

查看答案和解析>>

同步練習(xí)冊(cè)答案