已知等比數(shù)列{an}滿足a1a2=-
1
3
a3=
1
9

(I)求{an}的通項公式;
(II)設(shè)bn=
n+1
1×2
+
n+1
2×3
+…+
n+1
n(n+1)
,求數(shù)列{
bn
an
}
的前n項的和.
(Ⅰ)設(shè)an=a1qn-1,依題意,有
a1a1q=-
1
3
a1q2=
1
9
解得a1=1,q=-
1
3

∴an=(-
1
3
n-1
(Ⅱ)bn=
n+1
1×2
+
n+1
2×3
+…+
n+1
n(n+1)

=(n+1)[
1
1×2
+
1
2×3
+…+
1
n(n+1)
]
=(n+1)[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]
=n.
bn
an
=n•(-3)n-1
記數(shù)列{
bn
an
}的前n項的和為Sn,則
Sn=1+2×(-3)+3×(-3)2+…+n×(-3)n-1,
-3Sn=-3+2×(-3)2+3×(-3)3+…+n×(-3)n
兩式相減,得
4Sn=1+(-3)+(-3)2+…+(-3)n-1-n×(-3)n=
1-(-3)n
4
-n×(-3)n,
故Sn=
1-(4n+1)(-3)n
16
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、已知等比數(shù)列{an}的前n項和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項,第3項,第2項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習(xí)冊答案