12.若x,y滿足約束條件$\left\{{\begin{array}{l}{y≥|x|-2}\\{{x^2}≤4-y}\end{array}}\right.$,則z=3x+y的取值范圍是( 。
A.[-$\frac{11}{4}$,6]B.[-2,$\frac{25}{4}$]C.[-6,6]D.[-6,$\frac{25}{4}$]

分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過平移即可求z的最大值.

解答 解:畫出可行域知當(dāng)y=-3x+z與y=4-x2相切時(shí),
z取最大值,對(duì)y=4-x2求導(dǎo)可得-2x=-3,
解得$x=\frac{3}{2}$,代入y=4-x2可得$y=\frac{7}{4}$,
所以${z_{max}}=3×\frac{3}{2}+\frac{7}{4}=\frac{25}{4}$,
當(dāng)x=-2,y=0時(shí),z取最小值-6,
即z=3x+y的取值范圍是[-6,$\frac{25}{4}$],
故選D.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)直線和拋物線相切以及利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=ex-a(x-1).
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)當(dāng)a>0時(shí),若函數(shù)f(x)在區(qū)間(0,2]上存在唯一零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+4y≥0}\\{x-4y+4≥0}\\{x-2y≤0}\end{array}\right.$,則3x-2y的取值范圍是(-7,10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.圓C1:x2+y2=9與圓C2:(x+3)2+(y+4)2=16的位置關(guān)系是( 。
A.內(nèi)切B.相交C.外切D.外離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)全集U=R,集合M={x|x2+x-2>0},N={x|{2x-1≤$\frac{1}{2}$},則(∁UM)∩N=( 。
A.[-2,0]B.[-2,1]C.[0,1]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知P是雙曲線$\frac{x^2}{9}$-$\frac{y^2}{16}$=1右支上任意一點(diǎn),M是圓(x+5)2+y2=1上任意一點(diǎn),設(shè)P到雙曲線的漸近線的距離為d,則d+|PM|的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow a$,$\overrightarrow b$均為單位向量,它們的夾角為60°,$\overrightarrow c$=$\overrightarrow a$-2$\overrightarrow b$,則下列結(jié)論正確的是( 。
A.$\overrightarrow a$∥$\overrightarrow c$B.$\overrightarrow b$∥$\overrightarrow c$C.$\overrightarrow a$⊥$\overrightarrow c$D.$\overrightarrow b$⊥$\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知x=1是函數(shù)f(x)=xa+b的一個(gè)零點(diǎn).
(1)若函數(shù)f(x)在點(diǎn)(1,f(1))處的切線的斜率為2,求f(x)的解析式;
(2)設(shè)g(x)=f(x)+ln(1+e-2x),且g(x)是偶函數(shù),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=-2x2+ax-lnx(a∈R),g(x)=$\frac{ex}{{e}^{x}}$+3.
(I)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(II)若對(duì)任意x∈(0,e),都有唯一的xo∈[e-4,e],使得g(x)=f(xo)+2xo2成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案