已知函數(shù) 為常數(shù),
(1)當(dāng)時(shí),求函數(shù)處的切線方程;
(2)當(dāng)處取得極值時(shí),若關(guān)于的方程上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)若對(duì)任意的,總存在,使不等式成立,求實(shí)數(shù)的取值范圍。

(1) (2)
(3)

解析試題分析:(1)時(shí),
,于是,又,即切點(diǎn)為(
切線方程為—————————————————————————5分
(2),
,即,
此時(shí),,上減,上增,

———————————————————————————10分
(3)
,即
上增,
只須————————————————12分
(法一)設(shè)

在1的右側(cè)需先增,
設(shè),對(duì)稱軸
,
上,,即
上單調(diào)遞增,
,
于是——————————————————-15分
(法二)
設(shè),


設(shè)
上增,又,
,即,上增


數(shù)學(xué) 選修1B模塊答案
題號(hào):03答案
(1)法一:由柯西不等式知:

——————————————————5分
法二:
相加得:
——————————————————————5分
法三:令


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分14分) 定義在上的函數(shù)同時(shí)滿足以下條件:
上是減函數(shù),在上是增函數(shù);②是偶函數(shù);
處的切線與直線垂直.
(1)求函數(shù)的解析式;
(2)設(shè),求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意, 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)在一個(gè)周期內(nèi)的部分函數(shù)圖象如圖所示,(I)求函數(shù)的解析式;(Ⅱ)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)a∈R且).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)yf(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意t∈[1,2],函數(shù)在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是定義在上的奇函數(shù),且當(dāng)時(shí),
(Ⅰ)求的解析式;
(Ⅱ)直接寫出的單調(diào)區(qū)間(不需給出演算步驟);
(Ⅲ)求不等式解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)求它的定義域,值域和單調(diào)區(qū)間;
(2)判斷它的奇偶性和周期性。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知.
(1)求的表達(dá)式;
(2)若函數(shù)和函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,
(。┣蠛瘮(shù)的解析式;
(ⅱ)若在區(qū)間上是增函數(shù),求實(shí)數(shù)l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分8分)已知函數(shù).
(1)求證:函數(shù)上為增函數(shù);
(2)當(dāng)函數(shù)為奇函數(shù)時(shí),求的值;
(3)當(dāng)函數(shù)為奇函數(shù)時(shí), 求函數(shù)上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案