(本小題滿分12分)
已知函數(shù)
(1)求它的定義域,值域和單調(diào)區(qū)間;
(2)判斷它的奇偶性和周期性。
(1) ,的單調(diào)遞減區(qū)間為
;同理可得單調(diào)遞增區(qū)間為
(2) 是周期函數(shù),且最小正周期為,是非奇非偶函數(shù)
解析試題分析:解:由可得即
故的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/7/xsuls1.png" style="vertical-align:middle;" />
由可得,故的單調(diào)遞減區(qū)間為
;同理可得單調(diào)遞增區(qū)間為
(2)因而沒(méi)有意義
故是非奇非偶函數(shù)
由是周期函數(shù),且最小正周期為,可知是周期函數(shù),且最小正周期為
考點(diǎn):本試題考查了函數(shù)的性質(zhì)。
點(diǎn)評(píng):對(duì)于函數(shù)的奇偶性和單調(diào)性的判定,一般運(yùn)用定義法來(lái)判定,同時(shí)能結(jié)合三角函數(shù)的單調(diào)區(qū)間來(lái)求解,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b7/0/illo52.png" style="vertical-align:middle;" />,對(duì)于任意的,都有,且當(dāng)時(shí),.
(1)求證:為奇函數(shù); (2)求證:是上的減函數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù) 為常數(shù),
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)當(dāng)在處取得極值時(shí),若關(guān)于的方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)若對(duì)任意的,總存在,使不等式成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
(1)已知函數(shù)求
(2)已知函數(shù)與分別由下表給出:
1 | 2 | |
| 3 | 6 |
1 | 2 | |
2 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知函數(shù)滿足.
(Ⅰ)求的解析式及其定義域;
(Ⅱ)寫(xiě)出的單調(diào)區(qū)間并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),其中為常數(shù)
(1)為奇函數(shù),試確定的值
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com