若一個(gè)橢圓長(zhǎng)軸的長(zhǎng)度、短軸的長(zhǎng)度和焦距成等差數(shù)列,則該橢圓的離心率是(  )

(A)   (B)   (C)   (D)


B

解析:由題意可知,2a,2b,2c成等差數(shù)列,

∴4b=2a+2c,即a+c=2b,

又a2-c2=b2,∴=a2-c2,

即5c2+2ac-3a2=0,

∴5e2+2e-3=0,

解得e=或e=-1(舍去).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:


定義運(yùn)算a※b為a※b=如1※2=1,則函數(shù)f(x)=sin x※cos x的值域?yàn)椤   ? 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 直線(xiàn)與雙曲線(xiàn)位置關(guān)系的判定及應(yīng)用 

 已知雙曲線(xiàn)C的方程為-=1(a>0,b>0),離心率e=,頂點(diǎn)到漸近線(xiàn)的距離為.

 (1)求雙曲線(xiàn)C的方程;

(2)如圖,P是雙曲線(xiàn)C上一點(diǎn),A、B兩點(diǎn)在雙曲線(xiàn)C的兩條漸近線(xiàn)上,且分別位于第一、二象限.

,λ∈.求△AOB的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知△ABC的三邊長(zhǎng)|AB|=,|BC|=4,|AC|=1,動(dòng)點(diǎn)M滿(mǎn)足,且λμ=.

(1)求||最小值,并指出此時(shí),的夾角;

(2)是否存在兩定點(diǎn)F1,F2使|||-|||恒為常數(shù)k?若存在,指出常數(shù)k的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


設(shè)橢圓C: +=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,P是C上的點(diǎn),PF2⊥F1F2,∠PF1F2=30°,則C的離心率為(  )

(A)        (B)         (C)  (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


設(shè)橢圓+=1(a>b>0)的左焦點(diǎn)為F,離心率為,過(guò)點(diǎn)F且與x軸垂直的直線(xiàn)被橢圓截得的線(xiàn)段長(zhǎng)為.

(1)求橢圓的方程;

(2)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線(xiàn)與橢圓交于C,D兩點(diǎn).若·+·=8,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知點(diǎn)F1、F2分別是橢圓x2+2y2=2的左、右焦點(diǎn),點(diǎn)P是該橢圓上的一個(gè)動(dòng)點(diǎn),則的最小值是    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知橢圓C1: +=1(a>b>0)與雙曲線(xiàn)C2:x2-=1有公共的焦點(diǎn),C2的一條漸近線(xiàn)與以C1的長(zhǎng)軸為直徑的圓相交于A,B兩點(diǎn).若C1恰好將線(xiàn)段AB三等分,則(  )

(A)a2=   (B)a2=13

(C)b2=    (D)b2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


當(dāng)前,某城市正分批修建經(jīng)濟(jì)適用房以解決低收入家庭住房緊張問(wèn)題.已知甲、乙、丙三個(gè)社區(qū)現(xiàn)分別有低收入家庭360戶(hù)、270戶(hù)、180戶(hù),若第一批經(jīng)濟(jì)適用房中有90套住房用于解決這三個(gè)社區(qū)中90戶(hù)低收入家庭的住房問(wèn)題,現(xiàn)采用分層抽樣的方法決定各社區(qū)戶(hù)數(shù),則應(yīng)從乙社區(qū)中抽取低收入家庭的戶(hù)數(shù)為(  )

A.40  B.36  C.30  D.20

查看答案和解析>>

同步練習(xí)冊(cè)答案