設函數(shù)
(1)當時,求的值域
(2)解關于的不等式:

(1)值域為;(2)。

解析試題分析:(1)函數(shù)的對稱軸為,且離對稱軸較遠,所以的最小值為,的最大值為,值域為
(2),解出
考點:本題主要考查二次函數(shù)的性質,一元二次不等式的解法。
點評:典型題,涉及二次函數(shù)的題目,往往需要借助于函數(shù)的圖象解決問題,一般要考慮“開口方向,對稱軸位置,與x軸交點情況,區(qū)間端點函數(shù)值”等。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

時,冪函數(shù)為減函數(shù),求實數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),的一個極值點.
(1)求的單調遞增區(qū)間;
(2)若當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當x∈(0,+∞)時,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中,記函數(shù)的定義域為D
(1)求函數(shù)的定義域D;
(2)若函數(shù)的最小值為,求的值;
(3)若對于D內的任意實數(shù),不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)求f(x)的單調區(qū)間;
(2)若當x∈[-2,2]時,不等式f(x)>m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),其中.
(Ⅰ)當時,求不等式的解集;
(Ⅱ)若不等式的解集為 ,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

理科已知函數(shù),當時,函數(shù)取得極大值.
(Ⅰ)求實數(shù)的值;(Ⅱ)已知結論:若函數(shù)在區(qū)間內導數(shù)都存在,且,則存在,使得.試用這個結論證明:若,函數(shù),則對任意,都有;(Ⅲ)已知正數(shù)滿足求證:當,時,對任意大于,且互不相等的實數(shù),都有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

動點P從邊長為1的正方形ABCD的頂點A出發(fā)順次經過B、C、D,再回到A,設表示P點行程,表PA的長,求關于的函數(shù)關系式。

查看答案和解析>>

同步練習冊答案