如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)證明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值.

【答案】分析:(Ⅰ)先證明BD⊥AD、BD⊥PD,可得BD⊥平面PAD,再證明PA⊥BD;
(Ⅱ)建立空間直角坐標(biāo)系,求出平面PAB的法向量、平面PBC的法向量,利用向量的夾角公式,即可求得二面角A-PB-C的余弦值.
解答:(Ⅰ)證明:因?yàn)椤螪AB=60°,AB=2AD,由余弦定理得
從而B(niǎo)D2+AD2=AB2,故BD⊥AD
又PD⊥底面ABCD,BD?底面ABCD,所以BD⊥PD
因?yàn)锳D∩PD=D,所以BD⊥平面PAD
因?yàn)镻A?平面PAD,所以PA⊥BD;
(Ⅱ)解:如圖,以D為坐標(biāo)原點(diǎn),AD的長(zhǎng)為單位長(zhǎng),射線DA為x軸的正半軸建立空間直角坐標(biāo)系D-xyz,
則A(1,0,0),,,P(0,0,1).
,=(-1,0,0)
設(shè)平面PAB的法向量為=(x,y,z),則

因此可取n=
設(shè)平面PBC的法向量為=(x′,y′,z′),則,即
∴可取=(0,-1,
         
故二面角A-PB-C的余弦值為
點(diǎn)評(píng):本題考查線面垂直的判定與性質(zhì),考查面面角,考查空間向量的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點(diǎn).求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
(1)求證:AD⊥PB;
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求證:PD⊥AC;
(2)在棱PA上是否存在一點(diǎn)E,使得二面角E-BD-A的大小為45°,若存在,試求
AE
AP
的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點(diǎn)F是PB中點(diǎn).
(Ⅰ)若E為BC中點(diǎn),證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點(diǎn),證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,設(shè)PC與AD的夾角為θ.
(1)求點(diǎn)A到平面PBD的距離;
(2)求θ的大;當(dāng)平面ABCD內(nèi)有一個(gè)動(dòng)點(diǎn)Q始終滿足PQ與AD的夾角為θ,求動(dòng)點(diǎn)Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案