函數(shù)f(x)=cos2(x-
π
12
)+sin2(x+
π
12
)-1
 是( 。
分析:利用二倍角公式化簡函數(shù)的表達(dá)式,然后利用兩角和與差的余弦函數(shù)展開,化簡后,直接求出函數(shù)的周期,判斷函數(shù)的奇偶性即可.
解答:解:原式=
1
2
[1-cos(2x+
π
6
)]+
1
2
[1+cos(2x-
π
6
)]-1
=
1
2
cos(2x-
π
6
)-
1
2
cos(2x+
π
6

=
1
2
(cos2xcos
π
6
+sin2xsin
π
6
-cos2xcos
π
6
+sin2xsin
π
6

=
1
2
sin2x
所以T=
2
=π,
f(-x)=
1
2
sin(-2x)=-
1
2
sin2x=-f(x)
所以該函數(shù)是周期為π的奇函數(shù).
故選C.
點評:本題是基礎(chǔ)題,考查三角函數(shù)的化簡求值,二倍角公式的應(yīng)用兩角和與差的三角函數(shù)等有關(guān)知識,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x-
π3
)+sin2x-cos2x

(Ⅰ)求函數(shù)f(x)的最小正周期及圖象的對稱軸方程;
(Ⅱ)設(shè)函數(shù)g(x)=[f(x)]2+f(x),求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos(2x+
π
2
)
是( 。
A、最小正周期為π的偶函數(shù)
B、最小正周期為
π
2
的偶函數(shù)
C、最小正周期為π的奇函數(shù)
D、最小正周期為
π
2
的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①函數(shù)f(x)=
1
lgx
在(0,+∞)
是減函數(shù);
②在平面上,到定點(2,-1)的距離與到定直線3x-4y-10=0距離相等的點的軌跡是拋物線;
③設(shè)函數(shù)f(x)=cos(
3
x+
π
6
)
,則f(x)+f'(x)是奇函數(shù);
④雙曲線
x2
25
-
y2
16
=1
的一個焦點到漸近線的距離是5;
其中正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•石景山區(qū)一模)已知函數(shù)f(x)=cos(π-x)sin(
π
2
+x)+
3
sinxcosx

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求當(dāng)x∈[0,
π
2
]
時,f(x)的最大值及最小值;
(Ⅲ)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x+
π
3
)+sin2x
,
(1)化簡f(x);
(2)若不等式f(x)-m<2在x∈[
π
4
π
2
]
上恒成立,求實數(shù)m的取值范圍;
(3)設(shè)A,B,C為△ABC的三個內(nèi)角,若cosB=
1
3
,f(
C
2
)=-
1
4
,求sinA.

查看答案和解析>>

同步練習(xí)冊答案