【題目】在平面直角坐標系xOy中,圓C的方程為x2+y2﹣8x+15=0,若直線y=kx﹣2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x﹣a2x+1+a+1,a∈R.
(1)當a=1時,解方程f(x)﹣1=0;
(2)當0<x<1時,f(x)<0恒成立,求a的取值范圍;
(3)若函數(shù)f(x)有零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非零向量 , 滿足| |=1,且( ﹣ )( + )= .
(1)求| |;
(2)當 =- 時,求向量 與 +2 的夾角θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面為平行四邊形,M為PC中點.
(1)求證:BC∥平面PAD;
(2)求證:AP∥平面MBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】支籃球隊進行單循環(huán)比賽(任兩支球隊恰進行一場比賽),任兩支球隊之間勝率都是.單循環(huán)比賽結(jié)束,以獲勝的場次數(shù)作為該隊的成績,成績按從大到小排名次順序,成績相同則名次相同.有下列四個命題:
:恰有四支球隊并列第一名為不可能事件; :有可能出現(xiàn)恰有兩支球隊并列第一名;
:每支球隊都既有勝又有敗的概率為; :五支球隊成績并列第一名的概率為.
其中真命題是
A. ,, B. ,, C. .. D. ..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD,其三視圖和直觀圖如圖所示,E為BC中點. (Ⅰ)求此幾何體的體積;
(Ⅱ)求證:平面PAE⊥平面PDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)= sin(2x﹣ )+1的圖象向左平移 個單位長度,再向下平移1個單位長度后,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有的性質(zhì)(填入所有正確的序號) ①最大值為 ,圖象關(guān)于直線x= 對稱;②在(﹣ ,0)上單調(diào)遞增,且為偶函數(shù);③最小正周期為π;④圖象關(guān)于點( ,0)對稱,⑤在(0, )上單調(diào)遞增,且為奇函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)y=sinx(x∈R)的圖象上所有的點的橫坐標縮短到原來的 倍(縱坐標不變),再把所得圖象向左平行移動 個單位長度,得到的圖象所表示的函數(shù)是( )
A.y=sin( x+ ),x∈R
B.y=sin( x+ ),x∈R
C.y=sin(2x+ ),x∈R
D.y=sin(2x+ ),x∈R
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的長軸長為6,且橢圓與圓: 的公共弦長為.
(1)求橢圓的方程.
(2)過點作斜率為的直線與橢圓交于兩點, ,試判斷在軸上是否存在點,使得為以為底邊的等腰三角形.若存在,求出點的橫坐標的取值范圍,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com