(本小題滿分13分)
在銳角中,已知內角..所對的邊分別為..,向量,,且向量共線.
(1)求角的大。
(2)如果,求的面積的最大值.
解:(1)由向量共線有:
…………………………………………2分
即,……………………… 4分
又,所以,則=,即 …………………6分
(2)由余弦定理得即……7分
,當且僅當時等號成立……………9分
所以, 得
所以.……………………………… 12分
所以的最大值為……………………………… 13分
解析試題分析:(1)根據(jù)共線向量的坐標滿足的關系得到一個關系式,利用二倍角的正弦函數(shù)公式及同角三角函數(shù)間的基本關系化簡,即可求出tan2B的值,然后由銳角B的范圍求出2B的范圍,利用特殊角的三角函數(shù)值即可求出B的度數(shù);
(2)由b,cosB的值,利用余弦定理及基本不等式即可求出ac的最大值,根據(jù)三角形的面積公式進而得到三角形ABC面積的最大值。
解:(1)由向量共線有:
…………………………………………2分
即,……………………… 4分
又,所以,則=,即 …………………6分
(2)由余弦定理得即……7分
,當且僅當時等號成立……………9分
所以, 得
所以.……………………………… 12分
所以的最大值為……………………………… 13分
考點:本試題主要考查了掌握向量關系時滿足的條件,靈活運用二倍角的正弦函數(shù)公式及同角三角函數(shù)間的基本關系化簡求值,靈活運用余弦定理及三角形的面積公式化簡求值,是一道中檔題.。
點評:解決該試題的難點是運用均值不等式得到ac的最大值。
科目:高中數(shù)學 來源: 題型:解答題
已知向量m=(2sinx,cosx),n=(cosx,2cosx),定義函數(shù)f(x)=m·n-1.
(1)求函數(shù)f(x)的最小正周期;
(2)確定函數(shù)f(x)的單調區(qū)間、對稱軸與對稱中心.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com