(本小題滿分12分)正方體的棱長(zhǎng)為的交點(diǎn),上一點(diǎn),且
(1)求證:平面; (2)求異面直線所成角的余弦值;
(3)求直線與平面所成角的正弦值.

(1)略
(2)
(3)
解:(Ⅰ)如圖,以為原點(diǎn)建立空間直角坐標(biāo)系

,,,
,,
,

交于點(diǎn)

平面.……………………4分
(Ⅱ)設(shè)所成的角為
,
,


所求異面直線所成角的余弦值為.…………………………8分
(Ⅲ)設(shè)平面與直線所成的角為
設(shè)平面的法向量為
,,,

,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,, ,且MD=NB=1,E為BC的中點(diǎn)
求異面直線NE與AM所成角的余弦值
在線段AN上是否存在點(diǎn)S,使得ES平面AMN?若存在,求線段AS的長(zhǎng);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
在四棱錐P-ABCD中,底ABCD是矩形, PA⊥面ABCD, AP="AB=2," BC=, E、F、G分別為AD、PC、PD的中點(diǎn).
(1)求證: FG∥面ABCD
(2)求面BEF與面BAP夾角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E是MN的中點(diǎn)。

(1)求證:平面AEC⊥平面AMN;   (6分)
(2)求二面角M-AC-N的余弦值。  (6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)在多面體ABCDEFG中,底面ABCD是等腰梯形,,,,,H是棱EF的中點(diǎn)
(1)證明:平面平面CDE;
(2)求平面FGB與底面ABCD所成銳二面角的正切值。
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,四棱錐的底面是正方形,,點(diǎn)E在棱PB上.
(1)求證:平面;     
(2)當(dāng)且E為PB的中點(diǎn)時(shí),
求AE與平面PDB所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將邊長(zhǎng)為2,銳角為60°的菱形ABCD沿較短對(duì)角線BD折成四面體ABCD,點(diǎn)E、F
分別為AC、BD的中點(diǎn),則下列命題中正確的是           。(將正確的命題序號(hào)全填上)
①EF∥AB                                  ②EF與異面直線AC與BD都垂直
③當(dāng)四面體ABCD的體積最大時(shí),AC=     ④AC垂直于截面BDE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面六面體中,既與共面也與共面的棱的條數(shù)為 ( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)四棱錐的底面不是平行四邊形,用平面去截此四棱錐,使得截面四邊形是平行四邊形,則這樣的平面        個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案