設(shè)f(x)=lg
2+2x+a•4x
3
,若當(dāng)x∈(-∞,1]時(shí),f(x)有意義,則a的取值范圍是
 
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,2+2x+a4x在(-∞,1]上恒大于0,從而得到a>-
2+2x
(2x)2
在(-∞,1]恒成立,由
2+2x
(2x)2
≥1,x∈(-∞,1]求a.
解答: 解:由題意,2+2x+a4x在(-∞,1]上恒大于0,
即2+2x+a(2x2>0,
即a>-
2+2x
(2x)2
在(-∞,1]恒成立,
又∵
2+2x
(2x)2
≥1,x∈(-∞,1],
∴a>-1.
故答案為:a>-1.
點(diǎn)評(píng):本題考查了恒成立問(wèn)題的處理方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,設(shè)
AB
=
a
,
AD
=
b
,AP的中點(diǎn)為S,SD的中點(diǎn)為R,RC的中點(diǎn)為Q,QB的中點(diǎn)為P,若
AP
=m
a
+n
b
,則m+n=(  )
A、
6
5
B、
8
7
C、
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把函數(shù)y=f(x)的圖象向右平移
π
4
個(gè)單位,然后將圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的一半(縱坐標(biāo)不變)得到函數(shù)y=cosx的圖象,則函數(shù)y=f(x)的解析式為( 。
A、y=cos(
1
2
x+
π
4
B、y=cos(2x+
π
4
C、y=cos(
1
2
x+
π
8
D、y=cos(2x+
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
x2-bx+1
,b為常數(shù).
(1)判斷f(x)的奇偶性;
(2)若f(x)在(1,+∞)單調(diào)遞減,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b滿足
a-b≤1
a+b≥1
a-2b+3≥0
,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=mx2+mx+2-m.
(Ⅰ)若不等式f(x)>0對(duì)任意x∈R恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若x=0是不等式f(x)<x唯一的整數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

按要求求下列函數(shù)的值域:
(1)y=3
x
-1(觀察法);
(2)y=
-2x2+3x+2
(配方法);
(3)y=2-x+
3x-1
(換元法);
(4)y=
-2x+1
x-1
(分離常數(shù)法).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(ωx+
π
6
)(ω>0)的圖象與y軸交與P,與x軸的相鄰兩個(gè)交點(diǎn)記為A,B,若△PAB的面積等于π,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=20.5,b=logπ3,c=log20.3,則( 。
A、b>c>a
B、b>a>c
C、c>a>b
D、a>b>c

查看答案和解析>>

同步練習(xí)冊(cè)答案