【題目】為了弘揚民族文化,某校舉行了“我愛國學,傳誦經(jīng)典”考試,并從中隨機抽取了100名考生的成績(得分均為整數(shù),滿足100分)進行統(tǒng)計制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計概率,回答下列問題.

分組

頻數(shù)

頻率

5

0.05

0.20

35

25

0.25

15

0.15

合計

100

1.00

(1)求的值并估計這100名考生成績的平均分;

(2)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學校的“我愛國學”宣傳活動,求其中優(yōu)秀生的人數(shù);

【答案】(1);平均分 (2)優(yōu)秀生應抽取8人

【解析】試題分析:

(1)由頻率分布表可得;據(jù)此估計這100名考生成績的平均分;

(2)利用分層抽樣的定義結合抽樣比可得優(yōu)秀生應抽取8人.

試題解析:

(1)由頻率分布表得: ,解得 ,

平均分

(注:計算平均分,列式正確,結果錯誤扣2分)

(2)按成績分層抽樣抽取20人時,優(yōu)秀生應抽取20×0.4=8人.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標準,其合格產(chǎn)品的質量與尺寸之間滿足關系式為大于的常數(shù)),現(xiàn)隨機抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:

對數(shù)據(jù)作了處理,相關統(tǒng)計量的值如下表:

(1)根據(jù)所給數(shù)據(jù),求關于的回歸方程(提示:由已知, 的線性關系);

(2)按照某項指標測定,當產(chǎn)品質量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品,現(xiàn)從抽取的6件合格產(chǎn)品再任選3件,求恰好取得兩件優(yōu)等品的概率;

(附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為的正方體中,的中點,上任意一點,,上任意兩點,且的長為定值,則下面的四個值中不為定值的是( )

A. 到平面的距離B. 三棱錐的體積

C. 直線與平面所成的角D. 二面角的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列{an}的前n項和為Sn,且=9,S6=60

(I)求數(shù)列{an}的通項公式;

II)若數(shù)列{bn}滿足bn+1bn=n∈N+)且b1=3,求數(shù)列的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,側棱底面,底面為長方形,且,的中點,作于點.

(1)證明:平面;

(2)若三棱錐的體積為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)集具有性質對任意的,使得成立.

(1)分別判斷數(shù)集是否具有性質,并說明理由;

(2)求證:

(2)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分13分)

已知函數(shù)(其中),其部分圖像如圖所示.

I)求的解析式;

II)求函數(shù)在區(qū)間上的最大值及相應的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示已知A、BC是一條直路上的三點,ABBC各等于1 km,從三點分別遙望塔M,A處看見塔在北偏東45°方向,B處看塔在正東方向在點C處看見塔在南偏東60°方向,求塔到直路ABC的最短距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某山區(qū)小學有100名四年級學生,將全體四年級學生隨機按0099編號,并且按編號順序平均分成10組.現(xiàn)要從中抽取10名學生,各組內(nèi)抽取的編號按依次增加10進行系統(tǒng)抽樣.

1)若抽出的一個號碼為22,則此號碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學生的號碼;

2)分別統(tǒng)計這10名學生的數(shù)學成績,獲得成績數(shù)據(jù)的莖葉圖如圖4所示,求該樣本的方差;

3)在(2)的條件下,從這10名學生中隨機抽取兩名成績不低于73分的學生,求被抽取到的兩名學生的成績之和不小于154分的概率.

查看答案和解析>>

同步練習冊答案