精英家教網 > 高中數學 > 題目詳情
已知數列{an}是等差數列,首項a1=3,公差d=-1,設數列bn=2,Tn=b1b2…bn
(1)求證:數列{bn}是等比數列;
(2)Tn有無最大項,若有,求出最大值;若沒有,說明理由.
【答案】分析:(1)利用等差數列的通項公式,確定數列{an}的通項公式,利用等比數列的定義,即可得出結論;
(2)確定Tn,Tn最大,則最大,從而可得結論.
解答:解:(1)由已知條件,數列{an}是等差數列,首項a1=3,公差d=-1
∴數列{an}的通項公式為:an=4-n,∴….(3分)
,由定義知數列{bn}是等比數列…..(5分)
(2)Tn=b1b2…bn=,------------(7分)
若Tn最大,則最大,當n=3或4時,f(3)=f(4)=6最大,------------(10分)
故Tn有最大項,最大值為T3=T4=64------------(12分)
點評:本題主要考查等差數列的定義和性質,等差數列的通項公式,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義一個“等積數列”:在一個數列中,如果每一項與它后一項的積都是同一常數,那么這個數列叫“等積數列”,這個常數叫做這個數列的公積.已知數列{an}是等積數列,且a1=2,公積為5,則這個數列的前n項和Sn的計算公式為:
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在一個數列中,如果?n∈N*,都有an•an+1•an+2=k(k為常數),那么這個數列叫做等積數列,k叫做這個數列的公積.已知數列{an}是等積數列,且a1=1,a2=3,公積為27,則a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中數學 來源: 題型:

定義“等積數列”:在一個數列中,如果每一個項與它的后一項的積都為同一個常數,那末這個數列叫做等積數列,這個常數叫做該數列的公積.已知數列{an}是等積數列,且a1=2,公積為5,Tn為數列{an}前n項的積,則T2011=
51006
2
51006
2

查看答案和解析>>

科目:高中數學 來源: 題型:

我們對數列作如下定義,如果?n∈N*,都有anan+1an+2=k(k為常數),那么這個數列叫做等積數列,k叫做這個數列的公積.已知數列{an}是等積數列,且a1=1,a2=2,公積為6,則a1+a2+a3+…+a9=
18
18

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列的定義為:在一個數列中,從第二項起,如果每一項與它的前一項的差都為同一個常數,那么這個數列叫做等差數列,這個常數叫做該數列的公差.
(1)類比等差數列的定義給出“等和數列”的定義;
(2)已知數列{an}是等和數列,且a1=2,公和為5,求 a18的值,并猜出這個數列的通項公式(不要求證明).

查看答案和解析>>

同步練習冊答案