精英家教網 > 高中數學 > 題目詳情
關于實數x的不等式的解集依次為A與B,求使A⊆B的a的取值范圍.
【答案】分析:分別解出兩個不等式的解集,再根據A⊆B的關系比較端點求出a的取值范圍,由于本題中系數含有參數故需要對參數的范圍進行討論再求解不等式.
解答:解:由∴A={x|2a≤x≤a2+1}
由x2-3(a+1)x+2(3a+1)=[x-(3a+1)](x-2)≤0
當3a+1≥2即時,得B={x|2≤x≤3a+1}
當3a+1<2即時得B={x|2>x>3a+1}
綜上,當時,A⊆B可得解得1≤a≤3
時若A⊆B則3a+1≤2a≤a2+1≤2
解得a=-1
a的范圍是{a|1≤a≤3或a=-1}
點評:本題考查集合關系中的參數取值問題,求解的關鍵是正確解出兩個不等式的解集以及根據兩個集合的包含關系正確轉化出關于參數的不等式,此類題主要考查轉化的思想,本題中有一疑點,即轉化出來的不等式的等號能不能取到的問題,轉化后注意驗證,養(yǎng)成驗證的好習慣是保證此類題做對的一個關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

關于實數x的不等式|x-
1
2
(a+1)2|≤
1
2
(a-1)2x2-3(a+1)x+2(3a+1)≤0
的解集依次為A與B,求使A⊆B的a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

不等式選做題) 設a, bR, |ab|>2, 則關于實數x的不等式的解集是      .

查看答案和解析>>

科目:高中數學 來源:2010-2011學年山東大學附中高二(下)第一次月考數學試卷(文科)(解析版) 題型:解答題

關于實數x的不等式的解集依次為A與B,求使A⊆B的a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年重慶市萬州二中高二(上)期中數學試卷(解析版) 題型:解答題

關于實數x的不等式的解集依次為A與B,求使A⊆B的a的取值范圍.

查看答案和解析>>

同步練習冊答案