(本題滿(mǎn)分14分)
已知函數(shù)
(1)
(2)
(1),;(2)8<a<11。

試題分析:(1)由原題條件,可得到
.................3分
.........................6分
(2)
........................9分
函數(shù)在定義域上位增函數(shù),即有3a-24<9,
.................................12分
解得a的取值范圍為8<a<11...................14分
點(diǎn)評(píng):本題主要考查抽象函數(shù)的賦值及單調(diào)性的靈活應(yīng)用,要解決抽象函數(shù)的有關(guān)問(wèn)題需要牢牢把握所給已知條件及關(guān)系式,對(duì)式子中的字母準(zhǔn)確靈活的賦值,變形構(gòu)造。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義函數(shù),其中,且對(duì)于中的任意一個(gè)都與集合中的對(duì)應(yīng),中的任意一個(gè)都與集合中的對(duì)應(yīng),則的值為(    )
A.B.C.中較小的數(shù)D.中較大的數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)上的增函數(shù),設(shè)。
用定義證明:上的增函數(shù);(6分)
證明:如果,則>0,(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)
已知函數(shù)是奇函數(shù),且
(1)求,的值;
(2)用定義證明在區(qū)間上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知定義在上的偶函數(shù)在區(qū)間上是單調(diào)減函數(shù),若的取值范圍為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=ax-(a+1)ln(x+1),其中a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x>0時(shí),證明不等式:<ln(x+1)<x;
(3)設(shè)f(x)的最小值為g(a),證明不等式:-1<ag(a)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)中,在其定義域內(nèi)既是減函數(shù)又是奇函數(shù)為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)是定義在R上的奇函數(shù),且滿(mǎn)足,則     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

查看答案和解析>>

同步練習(xí)冊(cè)答案