【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=AD=a,E為CD上任意一點.
(I)求證:B1E⊥AD1;
(Ⅱ)若CD= a,是否存在這樣的E點,使得AD1與平面B1AE成45°的角?說明理由.
【答案】證明:(I)連接A1D,B1C,
∵AA1=AD,AA1∥AD,AA1⊥AD,
∴四邊形AA1D1D是正方形,
∴AD1⊥A1D,
∵A1B1⊥平面AA1D1D,AD1平面AA1D1D,
∴A1B1⊥AD1 ,
又A1D平面A1B1CD,A1B1平面A1B1CD,A1B1∩A1D=A1 ,
∴AD1⊥平面A1B1CD,又B1E平面A1B1CD,
∴B1E⊥AD1 .
(II)以A為原點,以AB,AD,AA1為坐標軸建立空間坐標系,
則A(0,0,0),D1(0,a,a),B1( a,0,a),設E(m,a,0),(0 ).
∴ =(0,a,a), =( a,0,a), =(m,a,0).
設平面B1AE的法向量為 =(x,y,z),則 ,
∴ ,令x=1得 =(1,﹣ ,﹣ ).
∴cos< >= =﹣ =﹣ .
假設存在這樣的E點,使得AD1與平面B1AE成45°的角,
則 = ,解得m= a.
∴CD上存在點E使得AD1與平面B1AE成45°的角.
【解析】(I)連接A1D,B1C,則可通過證明AD1⊥平面A1B1CD得出B1E⊥AD1 . (II)以A為原點建立坐標系,設DE=m,求出 及平面B1AE的法向量 ,令|cos< >|= 解出m,根據(jù)m的值得出結(jié)論.
【考點精析】利用空間中直線與直線之間的位置關(guān)系和空間角的異面直線所成的角對題目進行判斷即可得到答案,需要熟知相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知橢圓:的左、右頂點分別為A,B,其離心率,點為橢圓上的一個動點,面積的最大值是.
(1)求橢圓的方程;
(2)若過橢圓右頂點的直線與橢圓的另一個交點為,線段的垂直平分線與軸交于點,當時,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】連續(xù)拋擲同一顆均勻的骰子,令第i次得到的點數(shù)為ai , 若存在正整數(shù)k,使a1+a2+…+ak=6,則稱k為你的幸運數(shù)字.
(1)求你的幸運數(shù)字為3的概率;
(2)若k=1,則你的得分為5分;若k=2,則你的得分為3分;若k=3,則你的得分為1分;若拋擲三次還沒找到你的幸運數(shù)字則記0分,求得分X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,若橢圓經(jīng)過點,且的面積為.
(1)求橢圓的標準方程;
(2)設斜率為的直線與以原點為圓心,半徑為的圓交于,兩點,與橢圓交于,兩點,且,當取得最小值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的右焦點為,離心率為,過作與軸垂直的直線與橢圓交于兩點,.
(1)求橢圓的方程;
(2)設過點的直線的斜率存在且不為0,直線交橢圓于兩點,若中點為,為原點,直線交于點,若以為直徑的圓過右焦點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= (a>b>0)的圖象是曲線C.
(1)在如圖的坐標系中分別做出曲線C的示意圖,并分別標出曲線C與x軸的左、右交點A1 , A2 .
(2)設P是曲線C上位于第一象限的任意一點,過A2作A2R⊥A1P于R,設A2R與曲線C交于Q,求直線PQ斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,公園有一塊邊長為2的等邊△ABC的邊角地,現(xiàn)修成草坪,圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1)設AD=x(x≥1),ED=y,求用x表示y的函數(shù)關(guān)系式;
(2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應在哪里?請予證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓=1(a>b>0)的左、右焦點分別為F1,F2,P是橢圓上一點,|PF1|=λ|PF2|,∠F1PF2=,則橢圓離心率的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設常數(shù)a≥0,函數(shù)f(x)=x﹣ln2x+2alnx﹣1
(1)令g(x)=xf'(x)(x>0),求g(x)的最小值,并比較g(x)的最小值與0的大。
(2)求證:f(x)在(0,+∞)上是增函數(shù);
(3)求證:當x>1時,恒有x>ln2x﹣2alnx+1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com