精英家教網 > 高中數學 > 題目詳情
5.若向量$\overrightarrow{AB}$=(3,-2),$\overrightarrow{AC}$=(-1,-4),則向量$\overrightarrow{BC}$為( 。
A.(2,-6)B.(-4,-2)C.(4,2)D.(-4,2)

分析 根據向量的減法法則計算即可.

解答 解:$\overrightarrow{AB}$=(3,-2),$\overrightarrow{AC}$=(-1,-4),
則向量$\overrightarrow{BC}$=$\overline{AC}$-$\overrightarrow{AB}$=(-1,-4)-(3,-2)=(-4,-2),
故選:B.

點評 本題考查了向量的減法運算,深刻理解向量的運算法則是解決問題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

10.已知集合A={x|(x-6)(x-2a-5)>0},集合B={x|[(a2+2)-x]•(2a-x)<0}
(1)若a=5,求集合A∩B;
(2)已知a$>\frac{1}{2}$,且“x∈A”是“x∈B”的必要不充分條件,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知$\overrightarrow a、\overrightarrow b$是非零向量且滿足($\overrightarrow a$-2$\overrightarrow b$)⊥$\overrightarrow a$,($\overrightarrow b$-2$\overrightarrow a$)⊥$\overrightarrow b$,則$\overrightarrow a$與$\overrightarrow b$的夾角是( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.下列命題中,正確的序號是(2).
(1)存在x0>0,使得x0<sinx0
(2)若sinα≠$\frac{1}{2}$,則α≠$\frac{π}{6}$.
(3)“l(fā)na>lnb”是“10a>10b”的充要條件.
(4)若函數f(x)=x3+3ax2+bx+a2在x=-1有極值0,則a=2,b=9或a=1,b=3.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.f(x)=cos($\frac{π}{2}$-x)•cosx+$\sqrt{3}{sin^2}$x的最小正周期為π,單調遞減區(qū)間為[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.如圖所示,在△ABC中,D為BC的中點,BP⊥DA,垂足為P,且$|{\overrightarrow{BP}}|=4$,則$\overrightarrow{BC}•\overrightarrow{BP}$=( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.在邊長為1的正三角形ABC中,已知$\overrightarrow{AC}=\overrightarrow a,\overrightarrow{AB}$=$\overrightarrow b$,點E線段AB的中點,點F線段BC上,$\overrightarrow{BF}=\frac{2}{3}\overrightarrow{BC}$.
(1)以$\overrightarrow a,\overrightarrow b$為基底表示$\overrightarrow{AF},\overrightarrow{CE}$;
(2)求$\overrightarrow{AF}•\overrightarrow{CE}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.直線y=-$\sqrt{3}$x+3的傾斜角的大小為120°.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.關于平面向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,有下列四個命題:
①若$\overrightarrow a∥\overrightarrow b,\overrightarrow a≠0$,則存在λ∈R,使得$\overrightarrow b=λ\overrightarrow a$;
②若$\overrightarrow a•\overrightarrow b=0$,則$\overrightarrow a=0$或$\overrightarrow b=0$;
③存在不全為零的實數λ,μ使得$\overrightarrow c=λ\overrightarrow a+μ\overrightarrow b$;
④若$\overrightarrow a•\overrightarrow b=\overrightarrow a•\overrightarrow c$,則$\overrightarrow a⊥(\overrightarrow b-\overrightarrow c)$.
其中正確的命題是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步練習冊答案