如圖,將等差數(shù)列{an}的前6項(xiàng)填入一個(gè)三角形的頂點(diǎn)及各邊中點(diǎn)的位置,且在圖中每個(gè)三角形頂點(diǎn)所填的三項(xiàng)也成等差數(shù)列,數(shù)列{an}的前2012項(xiàng)和S2012=4024,則滿足nan>an的n的值為( 。
A、2012B、4024
C、2D、3
考點(diǎn):等比數(shù)列的前n項(xiàng)和
專題:規(guī)律型,等差數(shù)列與等比數(shù)列
分析:先根據(jù)題意得到數(shù)列{an}是常數(shù)數(shù)列,再根據(jù)S2013=4026可求出{an}的通項(xiàng),然后求出滿足nan>an的n的值即可.
解答: 解:∵數(shù)列{an}是等差數(shù)列,每個(gè)三角形的頂點(diǎn)所填的三項(xiàng)也成等差數(shù)列,
∴數(shù)列{an}是常數(shù)數(shù)列,
∵S2013=4026,
∴an=2,
∵nan>an,
∴n2>2n滿足條件的n的值為3
故選:D
點(diǎn)評(píng):本題主要考查了等差數(shù)列的通項(xiàng)公式,以及等差數(shù)列的前n項(xiàng)和,同時(shí)考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosα,-2),
b
=(sinα,1),且
a
b
,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

非空集合G關(guān)于運(yùn)算⊕滿足:(1)對(duì)任意的a,b∈G,都有a⊕b∈G;(2)存在e∈G,都有a⊕e=e⊕a=a;(3)對(duì)任意的a,b,c∈G,都有(a⊕b)⊕c=a⊕(b⊕c),則稱G關(guān)于運(yùn)算⊕為“融洽集”.現(xiàn)給出下列集合和運(yùn)算:
①G={非負(fù)整數(shù)},⊕為整數(shù)的加法.
②G={奇數(shù)},⊕為整數(shù)的乘法.
③G={平面向量},⊕為平面向量的數(shù)量積.
④G={二次三項(xiàng)式},⊕為多項(xiàng)式加法.
⑤G={虛數(shù)},⊕為復(fù)數(shù)的乘法.
其中G關(guān)于運(yùn)算⊕為“融洽集”的是( 。
A、①④⑤B、①②
C、①②③⑤D、②③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足,
x2y>4
0<
y2
x
≤16
x4
y3
≤16
,則
x2
y3
的最值情況是( 。
A、最大值為4,最小值為
1
64
B、最大值為4,無最小值
C、無最大值,最小值為
1
16
D、既無最大值,又無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足x+y=40且x,y都是正數(shù),則xy的最大值是(  )
A、400B、100
C、40D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個(gè)2×2列聯(lián)表中,由其數(shù)據(jù)計(jì)算得k2=13.097,則其兩個(gè)變量間有關(guān)系的可能性為( 。
A、99%B、95%
C、90%D、無關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 
3
0
|x2-4|dx=(  )
A、
21
3
B、
22
3
C、
23
3
D、
25
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xn+1(n∈N*)的圖象與直線x=1交于點(diǎn)P,若圖象在點(diǎn)P處的切線與x軸交點(diǎn)的橫坐標(biāo)為xn,則log2013x1+log2013x2+…+log2013x2013的值為( 。
A、-1
B、1-log20132012
C、-log20132012
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-6bx+3b在(0,1)內(nèi)有極小值,則(  )
A、b>0
B、b<1
C、0<b<
2
2
D、0<b<
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案