函數(shù)y=cos2的圖象沿x軸向右平移a個(gè)單位(a>0),所得圖象關(guān)于y軸對(duì)稱,則a的最小值為(  )

A.π B. C. D.

 

D

【解析】y=cos2===-sin2x,函數(shù)向右平移a個(gè)單位得到函數(shù)為y=-sin2(x-a)=-sin(2x-2a),要使函數(shù)的圖象關(guān)于y軸對(duì)稱,則有-2a=+kπ,k∈Z,即a=--,k∈Z,所以當(dāng)k=-1時(shí),得a的最小值為.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第五章 數(shù)列(解析版) 題型:解答題

已知數(shù)列{an}為等差數(shù)列,a3=5,a7=13,數(shù)列{bn}的前n項(xiàng)和為Sn,且有Sn=2bn-1,

(1)求{an},{bn}的通項(xiàng)公式.

(2)若cn=anbn,{cn}的前n項(xiàng)和為T(mén)n,求Tn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用(解析版) 題型:選擇題

(2014·荊州模擬)函數(shù)y=ln(2-x-x2)+的定義域是(  )

A.(-1,2) B.(-∞,-2)∪(1,+∞)

C.(-2,1) D.[-2,1)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第三章 三角函數(shù)、解三角形(解析版) 題型:解答題

(2013·重慶高考)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且a2=b2+c2+ab.

(1)求A.

(2)設(shè)a=,S為△ABC的面積,求S+3cosBcosC的最大值,并指出此時(shí)B的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第三章 三角函數(shù)、解三角形(解析版) 題型:填空題

在△ABC中,a=2,則b·cosC+c·cosB的值為_(kāi)_________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第三章 三角函數(shù)、解三角形(解析版) 題型:選擇題

已知函數(shù)y=cos(ωx+φ)(ω>0,|φ|<π)的部分圖象如圖所示,則(  )

A.ω=1,φ=

B.ω=1,φ=-

C.ω=2,φ=

D.ω=2,φ=-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第七章 立體幾何(解析版) 題型:解答題

如圖,AB=AD,∠BAD=90°,M,N,G分別是BD,BC,AB的中點(diǎn),將等邊△BCD沿BD折疊到△BC′D的位置,使得AD⊥C′B.

(1)求證:平面GNM∥平面ADC′.

(2)求證:C′A⊥平面ABD.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第七章 立體幾何(解析版) 題型:選擇題

(2014·泰安模擬)設(shè)a是空間中的一條直線,α是空間中的一個(gè)平面,則下列說(shuō)法正確的是( )

A.過(guò)a一定存在平面β,使得β∥α

B.過(guò)a一定存在平面β,使得β⊥α

C.在平面α內(nèi)一定不存在直線b,使得a⊥b

D.在平面α內(nèi)一定不存在直線b,使得a∥b

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:選擇題

設(shè)z1,z2是復(fù)數(shù),則下列命題中的假命題是(  )

A.若|z1-z2|=0,則

B.若z1=,則=z2

C.若|z1|=|z2|,則z1·=z2·

D.若|z1|=|z2|,則

 

查看答案和解析>>

同步練習(xí)冊(cè)答案